Robert L. Ehrlich, Jr., Governor Michael S. Steele, Lt. Governor

Robert L. Flanagan, Secretary Neil J. Pedersen, Administrator

STATE HIGHWAY ADMINISTRATION

RESEARCH REPORT

INTEGRATED MANAGEMENT OF HIGHWAY MAINTENANCE AND TRAFFIC - PHASE II

UNIVERSITY OF MARYLAND, COLLEGE PARK

FINAL REPORT

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Maryland State Highway Administration. This report does not constitute a standard, specification, or regulation.

Technical Report Documentation Page

1. Report No. MD-04-SP308B4R	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Integrated Management Of Highway Maintenance \& Traffic -Phase II		$\begin{aligned} & \text { 5. Report Date } \\ & \text { June } 2004 \end{aligned}$
		6. Performing Organization Code
7. Author/s Peter C. H. Chen, Paul Schonfeld and Ying Luo		8. Performing Organization Report No.
9. Performing Organization Name and Address Department of Civil and Environmental Engineering University of Maryland, College Park 1173 Glenn L. Martin hall College Park, MD 20742		10. Work Unit No. (TRAIS) 11. Contract or Grant No. SP308B4R
12. Sponsoring Organization Name and Address Maryland State Highway Administration Office of Policy \& Research 707 North Calvert Street Baltimore MD 21202		13. Type of Report and Period Covered Final Report 14. Sponsoring Agency Code
15. Supplementary Notes		
16. Abstract Highway maintenance, especially pavement rehabilitation or resurfacing, requires lane closures, which may cause considerable traffic disruptions and delays. This report presents integrated methods designed to help highway agencies in developing effective plans for maintenance planning and scheduling as well as for traffic management around work zones. Methods for optimizing work zone characteristics and traffic management plans that minimize the combined costs for highway agencies and motorists are developed for three cases: (1) a single maintained road with steady traffic inflows, (2) a single maintained road with time-dependent inflows, and (3) a road network with multiple detour paths. The new analysis methods are incorporated into MDZONES, a user-friendly software package, for which a user's manual is included as an appendix.		
17. Key Words highway maintenance, work zone, optimization, resurfacing, maintenance of traffic	18. Distribution Statement: No restriction This document is available from request.	e Research Division upon
19. Security Classification (of this report) None	20. Security Classification (of this page) None	21. No. Of Pages 246$\|$22. Price

Form DOT F 1700.7 (8-72) Reproduction of form and completed page is authorized.

Abstract

This report is the product of a project entitled "Integrated Management of Maintenance and Traffic" conducted at the University of Maryland, College Park, under the sponsorship of the Maryland State Highway Administration (SHA). This project developed various methods for analyzing the impacts of various decisions about work zones and traffic diversion plans on the time and cost required to accomplish the work as well as on the travel times and costs incurred by motorists. This report reviews the relevant literature and presents the methods developed in our project. A User Manual for the software package incorporating the analysis methods is included as an appendix. The methods and software allow users to analyze work zone options at various levels of detail, depending on the availability of input data and time for analysis.

Highway maintenance, especially pavement rehabilitation or resurfacing, requires lane closures. This work develops an integrated system to help highway agencies in developing traffic control plans for maintenance activities and in efficiently managing traffic around highway work zones. Thus, the objective of this study is to develop methods for optimizing work zone characteristics in order to minimize the combined total costs for highway agencies and users. Work zone models are developed for three cases: (1) a single maintained road with steady traffic inflows, (2) a single maintained road with time-dependent inflows, and (3) a road network with multiple detour paths, as well as plans for maintenance activities and managing traffic around highway work zones.

For Case 1, with steady traffic inflows, four alternatives for two-lane highways and four alternatives for four-lane highways are proposed. Analytical solutions are found for optimized work zone lengths and diversion fractions based on minimizing the total

cost. Guidelines for selecting the best alternative for different characteristics of traffic flows, road and maintenance processes are developed by deriving thresholds among alternatives. In Case 2, the models for two-lane highway and four-lane highway work zones for time-dependent inflows are developed. Two optimization methods, Powell's and Simulated Annealing, are adapted for this problem and compared. In numerical tests, a Simulated Annealing algorithm yields better solutions using less computer time than Powell's Method. In testing the reliability of Simulated Annealing, the statistical analysis for 50 replications of the cost minimization indicates that Simulated Annealing is very likely to find solutions that are very close in value to the global optimum. The SAUASD (Simulated Annealing for Uniform Alternatives with a Single Detour) algorithm is developed to find the best single alternative within a maintenance project. The SAMASD (Simulated Annealing for Mixed Alternatives with a Single Detour) algorithm is developed to search through possible mixed alternatives and diverted fractions in order to further minimize total cost. Thus, traffic management plans with uniform alternatives or mixed alternatives within a maintenance project are developed.

For Case 3, work zone optimization models for a road network with multiple detour paths and the SAMAMD (Simulated Annealing for Mixed Alternatives with Multiple Detour paths) algorithm are developed. For analyzing traffic diversion through multiple detour paths in a road network, the SAMAMD algorithm is used to optimize work zone lengths and schedule the resurfacing work. Analyses based on the CORSIM simulation are used not only to estimate delay cost, but also to evaluate the effectiveness of optimization models. A comparison of the results from optimization and simulation models indicates that they are consistent. The optimization models do significantly
reduce total cost, including user cost and maintenance cost, compared to the total cost of the current resurfacing policy in Maryland.

ACKNOWLEDGEMENTS

The researchers wish to thank the Office of Traffic and Safety and Office of Policy and Research of the Maryland State Highway Administration for supporting this project. They also wish to individually thank numerous SHA employees for technical help and advice, including Mr. Tom Hicks, Mr. Eric Tabacek, Mr. Jeff Smith, Ms. Allison Hardt, Mr. Daniel Witt, Mr. Mark Chapman, Mr. Paul Dorsey, Ms. Kathy Primus-Hearn, Mr. Saed Rahwanji and Ms. Kimberley Myers. Most especially, they very greatly appreciate the extensive technical support, advice and feedback provided by Mr . Jawad Paracha.

TABLE OF CONTENTS

ABSTRACT I
ACKNOWLEDGEMENTS IV
TABLE OF CONTENTS
LIST OF TABLES iv
LIST OF FIGURES vii
Chapter I Introduction 1
1.1 Background 1
1.2 Problem Statement 2
1.3 Research Objectives 4
1.4 Research Scope and Tasks 4
1.5 Technical Approach 5
1.6 Organization of Research 8
Chapter II Literature Review 11
2.1 Work Zone Issues 11
2.2 Work Zone Cost Items 12
2.3 Research Trends 13
2.4 Optimization Algorithms 21
2.5 Summary 24
Chapter III Work Zone Optimization for Steady Traffic Inflows 26
3.1 Highway System Definition 26
3.2 Work Zone Optimization - Two-Lane Two-Way Highway 30
3.2.1 Alternatives and Assumptions 30
3.2.2 Model Formulation 32
3.3 Work Zone Optimization - Four-Lane Two-Way Highway 41
3.3.1 Alternatives and Assumptions 41
3.3.2 Model Formulation 42
3.4 Determination of Work Zone and Detour Speeds 55
3.5 Threshold Analysis 57
3.6 Numerical Analysis - Two-Lane Two-Way Highway 58
3.6.1 Sensitivity Analysis 58
3.6.2 Selection Guidelines 65
3.6.3 Optimizing the Diverted Fraction 68
3.6.4 Summary 70
3.7 Numerical Analysis - Four-Lane Two-Way Highways 71
3.7.1 Sensitivity Analysis 71
3.7.2 Selection Guidelines 76
3.7.3 Optimizing the Diverted Fraction 79
3.7.4 Summary 80
Chapter IV Work Zone Optimization for Time-Dependent Inflows 81
4.1 Work Zone Cost Function for Time-Dependent Inflows 83
4.1.1 Model Formulation - Two-Lane Two-Way Highways (Alternative 2.1) 83
4.1.2 Model Formulation - Four-Lane Two-Way Highways (Alternative 4.1) 89
4.2 Optimization Methods 93
4.2.1 Powell's Method 93
4.2.2 Simulated Annealing Algorithm 95
4.3 Numerical Analysis - Two-Lane Two-Way Highway 108
4.4 Numerical Analysis - Four-Lane Two-Way Highway 118
4.5 Reliability of Simulated Annealing 123
Chapter V Work Zone Optimization with a Detour 125
5.1 Work Zone Cost Functions with a Detour 126
5.1.1 Queuing Delay on a Detour 126
5.1.2 Two-Lane Highway Work Zone with a Detour. 128
5.1.3 Four-Lane Highway Work Zone with a Detour. 135
5.2 Optimization Methods 142
5.2.1 Uniform Alternatives and Mixed Alternatives 142
5.2.2 Simulated Annealing Algorithm for Mixed Alternatives with a Single Detour- SAMASD 143
5.3 Numerical Examples - Two-Lane Highway Work Zone with a Detour 147
5.4 Numerical Examples - Four-Lane Highway Work Zone with a Detour 151
5.5 Numerical Examples - Mixed Alternatives 157
Chapter VI Work Zone Optimization with Multiple Detour Paths 163
6.1 Types of Multiple Detour Paths 163
6.2 Optimization Models for Work Zones with Multiple Detour Paths 167
6.2.1 Extension of Optimization Model for Multiple-lane Highway 167
6.2.2 Model Formulation 168
6.2.3 Simulated Annealing Algorithm for Mixed Alternatives with Multiple Detour Paths - SAMAMD 174
6.3 Development of Simulation Model 177
6.3.1 Simulation Model for Work Zone. 177
6.3.2 Evaluation of Optimization Models by Simulation 178
6.4 Case Study 181
6.4.1 Optimization Results 181
6.4.2 Current Policy 188
6.4.3 Simulation Results 191
Chapter VII Conclusions and Recommendations 195
7.1 Summary 195
7.2 Conclusions 196
7.2.1 Work Zone Optimization for Steady Traffic Inflows 196
7.2.2 Work Zone Optimization for Time-Dependent Inflows 197
7.2.3 Work Zone Optimization with a Detour 199
7.2.4 Work Zone Optimization for Multiple Detour Paths 200
7.3 Recommendations for Future Research 200
REFERENCES 204
Appendix A Variable List 212
Appendix B User's Manual for Maryland Work Zone Optimization - MDZONES 2.0 219
Appendix C Summary of Project Meeting on March 12, 2003. 244

LIST OF TABLES

Table 1.1 Organization of Research 10
Table 3.1 Inputs for Numerical Example and Sensitivity Analysis for Two-Lane Two- Way Highway Work Zones 59
Table 3.2 Optimized work zone lengths and Total Costs for Different Flow Rates 60
Table 3.3. Comparison of Delay Costs with Different Directional Flows for Alternative 2.2 ($p=0.6$) 61
Table 3.4 Circuity Threshold at Different Flow Rates 68
Table 3.5 Notation and Baseline Numerical Inputs Analysis for Four-Lane Two-Way Highway Work Zones 71
Table 3.6 Optimized work zone lengths (km) and Total Costs (\$/lane.km) for Various Flow Rates 73
Table 4.1 Simulated Annealing Algorithm 96
Table 4.2 Notation and Baseline Numerical Inputs for Two-Lane Two-Way Highway Work Zones 108
Table 4.3 AADT and Hourly Traffic Distribution on a Two-Lane Two-Way Highway 109
Table 4.4(a) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 11:00, $v_{d}=\$ 800 / \mathrm{hr}$ 111
Table 4.4(b) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 17:00, $v_{d}=\$ 800 / \mathrm{hr}$ 111
Table 4.5(a) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 11:00, $v_{d}=\$ 2000 / \mathrm{hr}$ 113
Table 4.5(b) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 11:00, $v_{d}=\$ 200 / \mathrm{hr}$ 113
Table 4.6(a) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: $11: 00, z_{2}=\$ 10,000 / \mathrm{km}$ 116
Table 4.6(b) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: $11: 00, z_{2}=\$ 5,000 / \mathrm{km}$ 116
Table 4.6(c) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 11:00, $z_{2}=\$ 100 / \mathrm{km}$ 117
Table 4.7 Notation and Baseline Numerical Inputs for Four-Lane Two-Way Highway Work Zones 118
Table 4.8 AADT and Hourly Traffic Distribution on a Four-Lane Two-Way Highway 119
Table 4.9 Optimized Results for Numerical Example (Four-Lane Highway), Project Starting Time: 21:00, $v_{d}=\$ 800 / \mathrm{hr}$. 120
Table 4.10(a) Optimized Results for Numerical Example (Four-Lane Highway), Project Starting Time: 21:00, $v_{d}=\$ 2400 / \mathrm{hr}$ 122
Table 4.10(b) Optimized Results for Numerical Example (Four-Lane Highway), Project Starting Time: 21:00, $v_{d}=\$ 100 / \mathrm{hr}$ 122
Table 4.11 Optimized Results for Numerical Example, Project Starting Time: 11:00, $v_{d}=\$ 800 / \mathrm{hr}\left(10^{\text {th }}\right.$ replication $)$, Alternative 2.1 124
Table 5.1 Inputs for Numerical Example for Two-Lane Highway Work Zones with Detour 147
Table 5.2 AADT and Hourly Traffic Distribution on Detour (Two-lane Highway) 148
Table 5.3 Optimized Results for Numerical Example, Project Starting Time: 11:00, $v_{d}=\$ 800 / \mathrm{hr}$, Alternative 2.3 149
Table 5.4 AADT and Hourly Traffic Distribution on Detour (Four-lane Highway) 152
Table 5.5(a) Optimized Results for Numerical Example, Main Road AADT=40,000 veh/day, Project Starting Time: 11:00, Alternative 4.1 156
Table 5.5(b) Optimized Results for Numerical Example, Main Road AADT=40,000 veh/day, Project Starting Time: 11:00, Alternative 4.2, $p=0.3$ 156
Table 5.6(a) Optimized Results for Numerical Example, Detour AADT=5,000 veh/day, Project Starting Time: 11:00, Alternative 2.3 159
Table 5.6(b) Optimized Results for Numerical Example, Detour AADT=5,000 veh/day, Project Starting Time: 11:00, Mixed Alternatives 159
Table 5.7(a) Optimized Results for Numerical Example, Detour AADT=20,000 veh/day, Project Starting Time: 11:00, Alternative 2.3 160
Table 5.7(b) Optimized Results for Numerical Example, Detour AADT=20,000 veh/day, Project Starting Time: 11:00, Mixed Alternatives 160
Table 5.8(a) Optimized Results for Numerical Example, Detour AADT=25,000 veh/day, Project Starting Time: 11:00, Mixed Alternatives 161

Table 5.8(b) Optimized Results for Numerical Example, Detour AADT=30,000 veh/day,
Project Starting Time: 11:00, Mixed Alternatives
161

Table $5.8(\mathrm{c})$ Optimized Results for Numerical Example, Detour AADT=35,000 veh/day,
Project Starting Time: 11:00, Mixed Alternatives 162
Table 6.1 Inputs for Case Study for IS-95 Eight-Lane Freeway Work Zones 182
Table 6.2 AADT and Hourly Traffic Distributions on Main Road (IS-95) and Detour (US-1)

184

Table 6.3 Optimized Results for Case Study, Project Starting Time: 20:00, Alternative
$\qquad 8.2(p=0.1, k=0) \ldots . ~$

Table 6.4 Optimized Results for Case Study, Project Starting Time: 20:00, Alternative $8.2(p=0.1, k=0.2)$ 187

Table 6.5 Optimized Results for Case Study, Project Starting Time: 20:00, Mixed
Alternatives ... 188
Table 6.6 Current Work Zone Policy for Case Study ($p=0, k=0$), Project Starting Time: 9:00 189

Table 6.7 Current Work Zone Policy for Case Study ($p=0, k=0$), Project Starting Time:

$$
19: 00 \ldots \ldots . ~
$$ 89

Table 6.8 Comparison Between Total Costs of Current Policy and Optimized Solution190
Table 6.9(a) Simulation (Simplified Network) and Optimization Results of Current Policies and Optimized Solution

Table 6.9(b) Simulation (Complete Network) and Optimization Results of Current Policies and Optimized Solution

Table 6.10 Comparison of the Results of Optimization Model and Simulation Model . 193

LIST OF FIGURES

Figure 1.1 Research Flow Chart 6
Figure 1.2 Conceptual Effect of Work Zone Length on Total Cost, Maintenance Cost, and User Cost 7
Figure 3.1 Geometries of Analyzed Work Zones for Two-Lane Two-Way Highways 28
Figure 3.2 Geometries of Analyzed Work Zones for Four-Lane Two-Way Highways 31
Figure 3.3 Queue Length for Four-lane Highway Work Zone 44
Figure 3.4 Total Cost vs. Detour Length 57
Figure 3.5 User Costs versus Various Zone Lengths ($Q_{I}=400 \mathrm{vph}, Q_{2}=400 \mathrm{vph}$) 61
Figure 3.6 Total Costs versus Various Work Zone Lengths ($Q_{1}=400 \mathrm{vph}, Q_{2}=400 \mathrm{vph}$). 62
Figure 3.7 Optimized Zone Length versus Setup Cost $z_{l}\left(Q_{I}=400 \mathrm{vph}, Q_{2}=400 \mathrm{vph}\right)$ 63
Figure 3.8 Optimized Zone Length versus Average Maintenance Time $z_{4}\left(Q_{I}=400 \mathrm{vph}\right.$, $\left.Q_{2}=400 \mathrm{vph}\right)$ 63
Figure 3.9 User Delay Costs versus Combined Flows 64
Figure 3.10 Total Cost versus Detour Length for Various Alternatives ($Q_{l}=200 \mathrm{vph}$, $Q_{2}=200 \mathrm{vph}$) 66
Figure 3.11 Total Cost versus Detour Length for Various Alternatives ($Q_{l}=400 \mathrm{vph}$, $\left.Q_{2}=600 \mathrm{vph}\right)$ 66
Figure 3.12 Total Cost versus Detour Length for Various Alternatives ($Q_{l}=800 \mathrm{vph}$, $Q_{2}=600 \mathrm{vph}$) 67
Figure 3.13. Total Cost versus Diverted Fraction $\left(Q_{2}=400 \mathrm{vph}, L_{d}=6 \mathrm{~km}\right)$ 69
Figure 3.14 Total Cost versus Diverted Fraction ($Q_{2}=400 \mathrm{vph}, L_{d}=12 \mathrm{~km}$) 70
Figure 3.15 Optimized Zone Length vs. Q_{1} 72
Figure 3.16 User Delay Cost vs. Work Zone Length ($Q_{I}=1,000 \mathrm{vph}, Q_{2}=500 \mathrm{vph}$, $Q_{3}=500 \mathrm{vph}$) 74
Figure 3.17 Total Cost vs. Work Zone Length ($\left.Q_{I}=1,000 \mathrm{vph}, Q_{2}=500 \mathrm{vph}, Q_{3}=500 \mathrm{vph}\right) 75$
Figure 3.18 Optimized Work Zone Length vs. Setup Cost ($Q_{l}=1,000 \mathrm{vph}, Q_{2}=500 \mathrm{vph}$, $\left.Q_{3}=500 \mathrm{vph}\right)$ 75
Figure 3.19 Minimized Total Cost vs. Q_{l} 77
Figure 3.20 Minimized Total Cost vs. Detour Length (a) $Q_{I}=1,000 \mathrm{vph}$ (b) $Q_{I}=1,500 \mathrm{vph}$ (c) $Q_{I}=2,000 \mathrm{vph}$ 78
Figure 3.21 Total Cost vs. Diverted Fraction 79
Figure 4.1 Work Zone Activities under Time-Dependent Inflows 82
Figure 4.2 Duration for Work Zone i with Time-dependent Traffic Inflows 85
Figure 4.3 Queuing Delay and Queue Dissipation for Four-Lane Highway Work Zone. 90
Figure 4.4 Flow Chart of Simulated Annealing Algorithm for Work Zone Optimization 100
Figure 4.5 Decrease Event 101
Figure 4.6 Increase Event 101
Figure 4.7 "Increaseinend" Event 102
Figure 4.8 "Increaseinbegin" Event 102
Figure 4.9 "Decreasinend" Event 103
Figure 4.10 "Decreaseinbegin" Event. 103
Figure 4.11 "Checklastzone" Event 104
Figure 4.12 "Deletezone" Event 105
Figure 4.13 Work Zone Durations 106
Figure 4.14 Search for Best Project Starting Time 107
Figure 4.15 Hourly Traffic Distributions on Two-Lane Highway and Minimized Total Cost vs. Project Starting Time 110
Figure 4.16 Project Duration vs. Average Cost of Idling Time 112
Figure 4.17 Number of Zones vs. Average Cost of Idling Time 115
Figure 4.18 Minimized Total Cost vs. Average Cost of Idling Time 115
Figure 4.19 Hourly Traffic Distributions on Four-Lane Highway and Minimized Total Cost vs. Project Starting Time 120
Figure 4.20 Project Duration vs. Average Cost of Idling Time 121
Figure 4.21. Minimized Total Costs in 50 Replications (Two-lane Highway) 124
Figure 5.1 Queuing Delay and Dissipation of Queue Length along Detour 127
Figure 5.2 Traffic Management Plan Combining Different Alternatives 143
Figure 5.3 SAMASD Algorithm. 145
Figure 5.4 Determining Alternatives and Diverted Fractions in SAMASD 146
Figure 5.5 Minimized Total Cost vs. Project Starting Time (Two-lane Highway Work Zones) 149
Figure 5.6 Minimized Total Cost vs. Detour AADT 150
Figure 5.7 Minimized Total Cost vs. Project Starting Time (Four-lane Highway Work Zones) 152
Figure 5.8 Minimized Total Cost vs. Detour AADT (a) Project Starting Time: 11:00 (b) Project Starting Time: 21:00 154
Figure 5.9 Minimized Total Cost vs. Main Road AADT (Project Starting Time: 11:00) 155
Figure 5.10 Minimized Total Cost vs. Detour AADT 157
Figure 6.1 Types of Multiple Detour Paths for Work Zones 165
Figure 6.1 Types of Multiple Detour Paths for Work Zones (continued) 166
Figure 6.2 Determining Alternatives and Diverted Fractions in SAMAMD 176
Figure 6.3 Evaluation of Work Zone Optimization Model by Simulation 180
Figure 6.4 Minimized Total Cost vs. Project Starting Time (IS-95, Eight-lane Freeway Work Zones, $k=0$) (a) Minimized Total Cost Scale: 100,000 - 2,500,000 (b) Minimized Total Cost Scale: 100,000-210,000 185
Figure 6.5 Minimized Total Cost vs. Diverted Fraction k ($p=0.1$, Project Starting Time: 20:00, IS-95, Eight-lane Freeway Work Zones) 186

Chapter I Introduction

1.1 Background

Highway maintenance, especially pavement rehabilitation or resurfacing, requires lane closures. Given the substantial cost of the maintenance and the substantial traffic disruption and safety hazards associated with highway maintenance work, it is desirable to plan and manage the work in ways that minimize the combined cost of maintenance, traffic disruptions and crashes. Work zone delays due to highway maintenance have been increasing in the U.S (Federal Highway Administration (FHWA), 2000). The aging highway system in the U.S. is undergoing extensive reconstruction and maintenance in recent years. According to the FHWA (Wunderlich, 2003), 13 percent in 2001 and 20 percent in 2002 of the National Highway System (NHS) were under construction during the peak summer road work season and work zones on the NHS resulted in a loss of over 60 million vehicles of capacity per day. The number of persons killed in motor vehicle crashes in work zones has risen from 693 fatalities in 1997 to 1,181 fatalities in 2002 (an average of 936 fatalities a year) and more than 40,000 people are injured each year as a result of motor vehicle crashes in work zones (Traffic Safety Facts 2002, National Highway Traffic Safety Administration (NHTSA), 2003).

Highway maintenance and the management of traffic through or around work zones are important activities. Appropriate traffic management plans can safely increase the work efficiency and decrease work zone delays. FHWA's statistics also show that 53 percent of work zones are designated for day work, 22 percent for night work, and 18 percent are active all day or nearly all day (Wunderlich, 2003). However, no comprehensive method has been developed to evaluate whether these work zones are
dimensioned and scheduled appropriately, allowing motorists to travel safely and smoothly, and allowing work crews to accomplish their work safely. Therefore, it is worthwhile to develop appropriate work zone analysis methods that can be used to evaluate current work zone plans and to develop better traffic management plans for highway maintenance activities.

1.2 Problem Statement

The overall costs of road maintenance and traffic disruption may be significantly reduced through properly integrated decisions about the conduct and schedule of maintenance activities and the development of appropriate traffic management plans. Several questions should be considered for comprehensive analysis:

- How long and wide should work zones be?
- How does the availability of alternate routes and their characteristics (e.g., length, design speed, excess capacity, traffic patterns) influence the above decisions?
- What fraction of traffic should be diverted to alternate routes?

When time-dependent inflows are considered, the analysis becomes more complex. Besides the above questions, the work scheduling, i.e., when the work should be done and how long closures should be last, must also be analyzed. The optimal work zone activities, including the optimized work zone lengths in different periods (day, night, peak period, off-peak period), the preferred starting time and ending time for each zone closure (e.g. terminating work during peak period to avoid serious traffic disruption), are also included among the problems considered. When considering timedependent inflows, traffic management plans combining different alternatives, which
have different work zone configurations or diversion, for different periods might be developed and applied to highway maintenance projects.

The above questions focus on a single maintained road. Furthermore, when a more complex road network is considered, not only should multiple detour paths be considered, but the scheduling of maintenance activities for roads in a road network must also be determined. Thus, the following two questions will be identified and solved:

1. How should roads and road networks be divided into work zones?
2. How does the effectiveness of various maintenance and traffic management solutions depend on the characteristics of particular road sections and the surrounding network, especially when considering multiple detour paths?

Various methods have been previously developed for analyzing some aspects of the above questions. However, no comprehensive method has been previously developed to jointly analyze these questions. This study aims to develop an integrated model as a decision support system to help highway agencies in developing traffic control plans for maintenance activities and in efficiently managing traffic around highway work zones. Work zone models will be developed for three cases: (1) a single maintained road with steady traffic inflows, (2) a single maintained road with time-dependent traffic demands, and (3) a road network with multiple detour paths, as well as plans for maintenance activities and managing traffic around highway work zones.

1.3 Research Objectives

The objective of this research is to develop an evaluation and decision support model for highway maintenance planning and traffic management. This research is intended to:

1. Identify feasible alternatives of work zone activities for various traffic control strategies and evaluate in detail their costs and other effectiveness measures for three different cases, namely, (1) steady traffic inflows, (2) time-dependent inflows, and (3) a road network with multiple detour paths.
2. Optimize the work zone characteristics to minimize the combined total costs for highway agencies and users.
3. Develop scheduling strategies and traffic management plans for the above three cases.

1.4 Research Scope and Tasks

Based on highway configuration, the scope of this study will cover (1) two-lane two-way highway work zones and (2) multiple-lane two-way highway work zones. Based on traffic flow patterns, the scope will cover (1) steady traffic inflows and (2) timedependent inflows. Based on detour type, the methods will cover (1) a single detour and (2) multiple detour paths.

The research tasks include the following:

- Classification of highway configuration and identification of possible work zone closure alternatives
- Development of work zone cost functions and an analytical optimization method for a single maintained road and a single detour with steady traffic inflows
- Development of work zone cost functions and optimization models (based on analytic method and Simulated Annealing algorithm) for a single maintained road and a single detour with time-dependent inflows
- Development of work zone cost functions and optimization models using analytic method, Simulated Annealing algorithm, and simulation model for a road network with multiple detour paths
- Development of appropriate traffic management plans combining different alternatives for all the cases analyzed

Figure 1.1 shows a flow chart for the tasks in this study.

1.5 Technical Approach

The objective of the work zone optimization problem is to minimize the total cost for work zone activities. The objective function for work zone activities can be expressed as follows:
$\operatorname{Min} C_{T}=C_{M}+C_{U}$
where C_{T} is total cost, C_{M} is maintenance cost, or supplier cost, and C_{U} is user cost. The controllable variables affecting C_{M} include work zone length, fixed setup cost, and average maintenance cost per unit length; the controllable variables affecting C_{U} include work zone length, traffic volumes, speed, diverted fraction (if detour is available), etc. Both C_{M} and C_{U} are functions of work zone length since C_{M} and C_{U} are significantly influenced by work zone size.

Figure 1.1 Research Flow Chart

Key: $C_{M}=$ Maintenance Cost
$C_{U}=$ User Cost
$C_{T}=$ Total Cost
Figure 1.2 Conceptual Effect of Work Zone Length on Total Cost, Maintenance Cost, and User Cost

Chien et al $(2001,2002)$ proposed that longer zones tend to increase the user delays, but the maintenance activities can be performed more efficiently with fewer repeated setups in longer zones. Since work zones lengths and maintenance duration affect maintenance and user cost, it is important to determine the tradeoffs between maintenance cost and user cost in order to minimize total cost, as shown in Figure 1.2.

Maintenance cost usually includes labor cost, equipment cost, material cost and traffic management cost. The first step in estimating maintenance cost is to determine construction quantities/unit prices. Unit prices can be determined from highway agencies historical data on previously bid jobs of comparable scale (Wall, 1998). In this study, the cost of maintaining cost of length L is assumed to be a linear function of the form $C_{M}=z_{1}+z_{2} L$, in which z_{1} represents the fixed cost for setting up a work zone and z_{2} is the average additional maintenance cost per work zone unit length.

In this study user cost includes user delay cost and crash cost. The user delay can be classified into queuing delay and moving delay (Cassidy and Bertini, 1999, Schonfeld and Chien, 1999, Chien and Schonfeld, 2001). The user delay cost is determined by multiplying the user dealy by the value of user time (Wall, 1998). The crash cost is related to the historical crash rate, delay, work zone configuration, and average cost per crash. Chien and Schonfeld (2001) determined crash cost from the number of crashes per 100 million vehicle hours multiplied by the product of the user delay and average cost per crash and then divided by work zone length.

The proposed methodology includes the development and application of mathematical models for a single maintained road with steady traffic inflows, with timedependent inflows, and finally, for a road network with multiple detour paths. The optimization approach is to formulate a total cost function, including agency cost (or maintenance cost) and user cost, and to find the work zone lengths and diversion fraction (if detour(s) is (are) available) which minimize that total cost function. Analytical solutions for optimized work zone lengths and diversion fraction are found. For cases where analytical solutions are impractical for time-dependent inflows and multiple detour paths, a heuristic algorithm is developed to find the optimized work zone lengths for each zone, zone start and end time, and the number of zones to minimize the total cost.

1.6 Organization of Research

In this study, previous studies are reviewed and summarized in Chapter 2. Work zone optimization models for steady traffic inflows are formulated and optimized analytically for two-lane and four-lane highway work zones in Chapter 3. Guidelines for
selecting the best alternative for different characteristics of traffic flows, road and maintenance processes are developed by threshold analysis. In Chapter 4, the work zone optimization models for time-dependent inflows are developed. Two optimization methods, Powell's and Simulated Annealing, are adapted for this problem and compared. The reliability of the Simulated Annealing algorithm is also tested. In Chapter 5 the work zone optimization models of four alternatives for two-lane highway and four alternatives for four-lane highway work zones with time-dependent inflows are developed. The SAUASD (Simulated Annealing for Uniform Alternatives with a Single Detour) algorithm is developed to find the best single alternative within a maintenance project. The SAMASD (Simulated Annealing for Mixed Alternatives with a Single Detour) algorithm is developed to search through possible mixed alternatives and diverted fractions in order to further minimize total cost. Thus, traffic management plans with uniform alternatives or mixed alternatives within a maintenance project are developed.

In Chapter 6, work zone optimization models for a road network with multiple detour paths and SAMAMD (Simulated Annealing for Mixed Alternatives with Multiple Detour paths) algorithm are developed. For analyzing traffic diversion through multiple detour paths in a road network, the SAMAMD algorithm is used to optimize work zone lengths and schedule the resurfacing work. Analyses based on the CORSIM simulation, developed by the Federal Highway Administration, are used not only to estimate delay cost, but also to evaluate the effectiveness of optimization models. Finally, conclusions about this work and the opportunities for future research are discussed in Chapter 7. Table 1.1 shows which cases and models are developed in various sections of this study.

Table 1.1 Organization of Research

Traffic Pattern	Detour Type	Methodology	Traffic Management Plan	Chapter	Case
Steady Traffic Inflows	SD	Analytical Method	UA	Chapter 3	Case 1
Time-Dependent Inflows		SAUASD		Chapter 4, 5	Case 2
		SAMASD	MA	Chapter 5	
	MD	SAUAMD	UA	Chapter 6	Case 3
		SAMAMD	MA		
		Simulation			

SA: Simulated Annealing
UA: Uniform Alternatives
MA: Mixed Alternatives
SD: Single Detour
MD: Multiple Detour Paths

Chapter II Literature Review

The literature review consists of several sections. The first section identifies and summarizes the main issues for the analysis of work zones. The second section focuses on the work zone cost items that are important and sensitive to work zone configurations. Research trends for work zones and optimization algorithms are then discussed.

2.1 Work Zone Issues

Work zone studies have considered various aspects of work zone configurations. Work zone issues include (1) capacity estimation for work zones, (2) work zone travel speed estimation, (3) delay estimation, (4) maximum queue length estimation, (5) work zone safety models, (6) optimization of work zone lengths, (7) scheduling of work zone activities, (8) resurfacing procedures, and (9) work zone cost estimation. The main variables considered in these studies are traffic volumes, work zone capacity, availability of alternate roads, road types, work zone configurations, work zone length, work time, and work intensity.

These issues are directly related to the development of cost functions for analyzing work zones. Capacity estimation and work zone travel speed estimation are issues that many early work zone studies have focused on. Delay estimation and queue length estimation methods have been developed and used to analyze traffic disruptions and to determine the maximum feasible work intensity. Recently, work zone studies have sought to develop safety models that can predict the frequencies of crashes according to work zone configurations.

Optimizing work zone lengths is an important issue that has been relatively neglected. In general, longer zones tend to increase the user delays, but the maintenance activities can be performed more efficiently (i.e., with fewer repeated setups) in longer zones (Schonfeld and Chien, 1999). In practice, such lengths have been usually designed to reduce costs to highway agencies rather than users.

Meanwhile, highway agencies have developed associated regulations to design work zone configurations to improve workers' and users' safety. Related regulations about scheduling maintenance work have also been developed to enhance public awareness and to decrease traffic disruption in peak periods.

Highway maintenance issues concern transportation engineers, structural engineers and construction management engineers, with different groups focusing on different aspects.

2.2 Work Zone Cost Items

Work zone costs may be classified into two categories: (1) agency costs and (2) user costs. Agency costs are those expenses required to finish the work zone activities based on the work types. Those normally include labor costs, equipment costs, material costs and traffic maintenance costs.

Meanwhile, user costs can be classified into (1) user delay costs and (2) safety (crash) costs. Since delays and crashes due to work zone activities are very important in optimizing work zone lengths and schedules, researchers have tried several methods to properly estimate the user delay and safety costs (McCoy and Peterson, 1987; Schonfeld and Chien, 1999; Venugopal and Tarko, 2000; Chien and Schonfeld, 2001; and Chien et
al., 2002). User costs have received such attention in work zone analysis because they tend to dominate other costs and because community concerns and reactions to work zone activities affect many aspects of work zone decisions.

2.3 Research Trends

1. Work Zone Capacity

Krammes and Lopez (1994) provided recommendations for estimating the capacity of the remaining lanes during short-term lane closures based on 45-hour capacity counts between 1987 and 1991 at 33 Texas freeway locations with work zones. Adjustments were suggested for the effects of the intensity of work zone activities, percentage of heavy vehicles in the traffic stream, and presence of entrance ramps near the beginning of a lane closure. Dudek and Richards (1982) presented more detailed information based on field data analysis for estimating road capacity during maintenance work. They considered lane closure strategies and obtained cumulative distribution of observed work zone capacities. In a later study (Dudek et al., 1986), they estimated capacities for work zones on four-lane highways.

Memmott and Dudek (1984) used a regression model to estimate the mean capacity for a work zone. The advantage of using the regression model was that most lane closure types were covered and the restricted capacity used for traffic management purposes could be estimated. However, they only used a capacity estimation risk factor as a variable instead of specifying other possible geometric variables. Kim and Lovell (2001) developed a multiple regression model to estimate capacity in work zones in order to establish a functional relationship between work zone capacity and several key
independent factors, including the number of closed lanes, the proportion of heavy vehicles, grade and the intensity of work activities.

2. Speed and Delay

Since the travel delays of roadway users in a work zone are the primary determinant of user delay cost, studies related to speed and delay analysis for work zones have been reviewed. In a study of traffic characteristics on Illinois freeways with lane closures, Rouphail and Tiwari (1985) evaluated the effects of intensity and location of construction and maintenance activities on mean speeds through a work zone. The results showed that the mean speeds through a work zone decrease as the intensity of construction and maintenance activities increase. The mean speeds also decrease as the construction and maintenance activities move closer to the travel lanes.

Pain et al. (1981) provided a detailed study of speeds in work zones. The mean speeds were found to vary depending on such factors as traffic volumes (e.g., in peak and off-peak hours), lane closure configurations (e.g., right lane closure, left lane closure, and a two-lane bypass), traffic control devices (e.g., cones, tubular cones, barricades, and vertical panels) and locations within work zones. Rouphail et al. (1988) derived various mean values and coefficients of variation to describe the speed change in work zones. They found that the average speed does not vary considerably at light traffic volumes and that the speed recovery time is longer at high traffic volumes. Their results also indicated that speed control has a very important role in reducing crash frequency.

Memmott and Dudek (1984) developed a computer model, called Queue and User Cost Evaluation of Work Zone (QUEWZ), to estimate the average speed in work zones
and calculate user costs, including user delays costs and vehicle operating costs. The effects of different lane-closure strategies and the number of hours available for lane closures are determined based on an assumed lane capacity and various traffic volumes. However, that model does not consider any alternate path and the effect of diverting traffic to it.

Jiang (1999) developed a traffic delay model to estimate work zone delay costs based on traffic data collected at work zones on Indiana's freeways. The delays related to work zones were classified into four categories: (1) deceleration delay by vehicle deceleration before entering a work zone, (2) moving delay by vehicles passing through work zones with lower speed, (3) acceleration delay by vehicle acceleration after exiting work zone, and (4) queuing delay caused by the ratio of vehicle arrival and discharge rates. In addition to the user delay generalized as queuing delay and moving delay considered by others (Cassidy and Bertini, 1999, Schonfeld and Chien, 1999, Chien and Schonfeld, 2001), Jiang also considered deceleration and acceleration delays to users.

3. Delay and Queue Length

Cassidy and Han (1994) used empirical data to estimate vehicle delays and queue lengths on two-lane highways operating under one-way traffic control. However, the work zone length was not optimized in that study.

Jiang (2001) developed a queue estimation method to calculate traffic delay using queue-discharge rates instead of work zone capacity because author noted that queuedischarge rates are lower than work zone capacity (Jiang, 1999).

4. Models for Optimizing Work Zone Length and Safety

McCoy et al. (1980) developed a method to optimize the work zone length by minimizing the road user and traffic control costs in construction and maintenance zones of rural four-lane divided highways. This method provided a framework for optimizing the lengths of work zones by minimizing the total costs, including construction costs. The user delay costs were modeled based on average daily traffic (ADT) volumes, while the crash costs were computed by assuming that the crash rate per vehicle mile was constant in a work zone area. The optimal work zone length was derived based on 1979 data. Because the unit cost factors had changed considerably since 1981, McCoy and Peterson (1987) found the optimum work zone lengths to be about 64% longer that those used previously. They (1987) also conducted a safety study for various lengths of work zones on four-lane divided highways. No relation was found between the lengths of work zones and crash rates or any of the speed distribution parameters, such as the standard deviation of vehicle speeds and the range of vehicle speeds. They also found the average crash rate was 30.8 crashes per 100 million vehicle miles ($\mathrm{acc} / 100 \mathrm{mvm}$) on I-80 in Nebraska between 1978 and 1984.

Considering traffic safety in construction and maintenance work zones, Pigman and Agent (1990) conducted a statewide work zone analysis. The crash data were collected from the Kentucky Accident Reporting System (KARS) for the 1983-1986 periods. They found that the work zone crash rate varied from 36 to $1,603 \mathrm{acc} / 100 \mathrm{mvm}$ on different highways.

Some efforts to mitigate the impacts of work zones have been made by Janson et al (1987). One of such efforts optimized work zone traffic control design and practice
considering such aspects as optimal design of control devices, optimal lane closure configuration and optimal work zone length. Martinelli and Xu (1996) added the vehicle queue delay costs into McCoy's (1980) model. The work zone length was optimized by minimizing the total user cost, excluding the maintenance and crash costs. To estimate the roadway maintenance costs, Underwood (1994) analyzed the work duration and the maintenance cost per $10,000 \mathrm{~m}^{2}$ for five different roadway maintenance activities (i.e., surface dressing, asphalt surface, porous asphalt, 10% patching, and milling out). The average maintenance costs were calculated based on prices quoted to highway authorities in the summer of 1993.

Chien and Schonfeld (2001) developed a mathematical model to optimize the work zone lengths on four-lane highways using a single-lane closure approach. The objective of the study was to minimize the total cost including agency cost, crash cost and user delay cost based on two steady traffic inflows. They did not consider alternate paths and assumed uniform traffic flow. Viera-Colon (1999) developed a similar model of fourlane highways which considered the effect of different traffic conditions and an alternate path. However, that study did not develop alternative selection guidelines for different traffic flows or road characteristics.

Schonfeld and Chien (1999) also developed a mathematical model to optimize the work zone lengths plus associated traffic control for two-lane, two-way highways where one lane at a time is closed. They found the optimal work zone length and cycle time for traffic control and minimized the total cost, including agency cost and user delay cost, but no alternative routes were considered in that study.

5. Scheduling Work Zone Activities

Fwa, Cheu, and Muntasir (1998) developed a traffic delay model and used genetic algorithms to minimize traffic delays subject to constraints of maintenance operational requirements. Pavement sections, work teams, and start time and end for each section were scheduled. However, many conditions in that study were given, e.g. work zone configuration and available work duration for each team, and road section length. These variables were not optimized in that study. Chang, Sawaya, and Ziliaskopoulos (2001) used traffic assignment approaches to evaluate the traffic delay caused by work zones and a Tabu Search methodology was employed to select the schedule with the least total traffic delays, which include the impact of work zone combinations on an urban street network. Chang considered impact of network delay for urban areas while Fwa's research neglected the impact of network delay due to detours.

Chien, Tang, and Schonfeld (2002) developed a model to optimize the scheduling of work zone activities associated with traffic control for two-lane two-way highways where one lane at a time is closed. However: (1) the traffic pattern used in that research was simplified into four traffic volumes during four period in a day: morning peak, daytime, evening peak, and nighttime periods, which could not fully reflect the real traffic situation, (2) the search approach to determine each zone length is a greedy method, whose results may be sub-optimal, and (3) the effects of highway networks on work zone characteristics were not considered. Jiang and Adeli (2003) used neural networks and simulated annealing to optimize only one work zone length and starting time for a four-lane freeway, considering factors such as darkness and numbers of lanes
closed. More complete scheduling plans for multiple-zone maintenance projects were not attempted in that work.

6. Construction Congestion Cost

Carr (2000) developed a construction congestion cost (CO^{3}) system to estimate the impact of traffic maintenance contract provisions on congestion, road user cost, and construction cost. CO^{3} was implemented in a Microsoft Excel spread sheet and consists of three sheets: (1) route sheet computing equivalent average vehicle routes for complex diversion routes, (2) input sheet providing for documentation of vehicle and route inputs and computing user cost for single trips through the work zone, diversions, and cancellations, and (3) traffic sheet computing daily traffic impacts and user costs for each construction method. Although CO^{3} provides practical information with which engineers select construction methods, it does not optimize work zone configurations.

7. QuickZone Software for Work Zones

The 1998 FHWA report "Meeting the Customer's Needs for Mobility and Safety During Construction and Maintenance Operations" recommends the development of an analytical tool to estimate and quantify work zone delays. This scope of work lays out a plan for the development of an easy-to-master analytic tool (currently under the working title "QuickZone") for quick and flexible estimation of work zone delay. The primary functions of QuickZone include quantification of corridor delay resulting from capacity decreases in work zones, identification of delay impacts of alternative project phasing plans, supporting tradeoff analyses between construction costs and delay costs, examination of impacts of construction staging, by location along mainline, time of day
(peak vs. off-peak) or season, and assessment of travel demand measures and other delay mitigation strategies. The costs can be estimated for both an average day of work and for the whole life cycle of construction. However, there is no optimization function in Quickzone.

The Maryland State Highway Administration (SHA) and the University of Maryland (Kim and Lovell, 2001) used QuickZone's open source code to customize the program to meet the State's needs. The University has added its own capacity estimation model to the program and has used a 24-hour traffic count, instead of the average daily traffic count found in original version. FHWA and Maryland's Quickzone versions provide a useful to estimate work zone delay; however, there was still no optimization model in these programs.

8. Simulation Modeling for Work Zones

CORSIM (Corridor Simulator) is a microscopic simulation model developed by the Federal Highway Administration (FHWA) and can simulate coordinate traffic operations on surface streets and freeways. Generally, work zone delays occurring in a single road section or simple road network can be derived from deterministic queuing theory; however, with a simulation method such as CORSIM, it is much easier to estimate work zone delays in a more complex road network. Nemeth and Rathi (1985), Cohen and Clark (1996), and Chien and Chowdhury (1998) used CORSIM to study velocity and analyze capacity for freeway operations. CORSIM can be adapted to simulate traffic operations around a work zone by assuming one more lane closure for a work zone as the lane closure caused by an incident. Schrock and Maze (2000) developed
a work zone simulation model and used CORSIM to evaluate four alternatives for work zones along Interstate 80 in Iowa. The simulation model was developed as a planning tool to determine the potential benefits of alternative traffic management plans at a longterm work zone.

Maze and Kamyab (1999) used Arena, a simulation model with an advanced animation module, to develop a work zone simulation model, including car-following and lane-changing algorithms, to estimate work zone delays. That study only applied ARENA for a work zone in a single road. No detours or road networks were considered.

2.4 Optimization Algorithms

When work zone optimization is based on steady traffic inflows, the optimization result can often be obtained directly with an analytic method. When time-dependent inflows or multiple detour networks are considered, the cost functions will become more complex and thus more complex algorithms are needed for large optimization problems.

Optimization techniques such as genetic algorithms (GA), simulated annealing (SA), and tabu search (TS) are widely used in combinatorial optimization problems (COP), where the objective is to choose a best solution out of a large number of possible solution, and obtain very good results in NP-hard (can not be solved in polynomial time) combinatorial optimization problems. These three probabilistic heuristic methods share two main characteristics. One is that these three algorithms are inspired by real phenomena in physics, biology, and social science. The other is that they use a certain amount of repeated trials to find the optimal or near optimal solution (Colorni et al., 1996). Pham and Karaboga (2000) found that GA performs better than TS and SA for the
traveling salesman problem. Sadek et al. (1999) used SA and GA to solve a dynamic traffic routing problem and found that SA tends to perform better than GA. Nalamottu et al. (2002) compared GA to SA in solving transportation location-allocation problems and found SA to be better than GA in its convergence to exact solutions and its computation time. Zolfaghari and Liang (2002) compared GA, SA, and TS in terms of solution quality, search convergence behavior and presearch effort for solving binary comprehensive machine-grouping problems. Their results indicated that SA outperforms both GA and TS, particularly for large problems.

Recently, hybrid methods combining these three algorithms were developed for combinatorial optimization problems (Liu et al., 2000, Adamopoulos et al, 1998). A hybrid method combines the advantages of each algorithm. For example, Liu et al. combined the advantages of GA, SA, and TS to solve the reactive power optimization problem. They adopt the acceptance probability of SA to improve the convergence of the GA, and apply TS to find more accurate solutions.

Generally, it is recognized that GA's are not well suited for finely tuned local search. However, after promising regions of the source space are identified by the GA, it may be useful to invoke a local search routine to optimize the members of the final population (Grefenstette, 1987). SA has been proven effective for the optimal or nearoptimal solution for a local regional search (Pham and Karaboga, 2000). Li et al. (2002) used GA to generate a group of initial solutions and then used SA to search the local optimum for solving machine operation process plans. Colorni et al. (1996) concluded that SA has a "well-defined" advantage with likely lower future developments, and TS
and GA have a "dynamic" advantage with large possibilities of novel research for theories and results.

In view of the above literature review, there are two main reasons why SA is applied in this study for work zone optimization problems. First, SA is more completely developed and provides more finely tuned results than other two methods for combinatorial optimization problems. Second, the methodology in Case 1 will be applied to generate the initial solutions for Case 2 and Case 3. From the research flow of this study, the results of Case 1 for steady traffic inflows are the fundamentals of Case 2 for time-dependent inflows and of Case 3 for multiple detour networks. Then SA can be used to seek a global or near global optimum by using the initial solution obtained by the methodology in Case 1. Due to these characteristics, SA will be applied to solve work zone optimization problems in this study.

The SA approach was derived from statistical mechanics for finding near optimal solutions to large optimization problems. Simulated annealing was developed by Metropolis (1953) when it was used to simulate the annealing process of crystals on a computer. Kirkpatrick et al. (1983) generalized an approach by introducing a multitemperature approach in which the temperature is lowered slowly in stages. Kirkpatrick et al. applied this methodology to solve the problems of combinatorial optimization, especially the problems of wire routing and the component placement in VLSI (Very Large Scale Integration) design.

SA is sensitive to a number of control parameters and stopping rules (Wilhelm and Ward, 1987). The algorithm has potential to find high-quality solutions but at the cost of substantial computational efforts (Aarts and Korst, 1989). For example, if the initial
temperature is too high and the cooling schedule is very slow, the cooling will takes long computational time to approach final temperature. However, it is inefficient even if the solution has high quality. If the initial temperature is too low and the cooling schedule is too fast, the solution may not be close to the optimum. Therefore, the cooling schedule should be chosen carefully.

SA is widely used in transportation related research. Hadi and Wallace (1994), Oda et al. (1997), and Lee and Machemehl (1997) used SA to solve signal phasing and timing optimization problems. Taniguchi et al. (1999) and Kokubugata et al. (1997) applied SA to find optimal assignment for vehicle routing and scheduling problems. Chang (1994) used SA to solve flight sequencing and gate assignment problems.

For the work zone optimization problem, Jiang and Adeli (2003) used neural networks and simulated annealing to optimize work zone length and starting time for a four-lane freeway. Only one zone length and starting time are optimized in that study. More complete scheduling plans for multiple-zone maintenance projects are needed in practice.

2.5 Summary

After a review the above studies, it appears that work zone capacity, delays, work zone length, and costs have already been developed for steady traffic inflows and partially for time-dependent inflows. However, further research on work zone optimization with detours, including a single detour and multiple detour paths, for both steady and time-dependent inflows is quite necessary and important for the development of practical work zone project scheduling and traffic management plans.

Some analytical and heuristic methods were proposed for solving work zone optimization problems in the above studies; however, those studies did not present complete results for steady and time-dependent inflows, with and without detour(s). No comprehensive method has been previously developed to jointly analyze the work zone optimization problem. Therefore, this study will focus on the work zone optimization methods for steady and time-dependent inflows with a single detour and with multiple detour paths.

Chapter III Work Zone Optimization for Steady Traffic Inflows

In this chapter, work zone optimization models for steady traffic inflows are developed for two-lane highway and four-lane highway work zones. The highway system and various work alternatives are defined in Section 3.1. Analytical optimization models are developed for two-lane highway and four-lane highway work zones in Sections 3.2 and 3.3. Sections 3.4 and 3.5 show the speeds along work zones and detours are determined and how the threshold analysis is conducted. Finally, numerical results for two-lane and four-lane highways are shown in Sections 3.6 and 3.7.

3.1 Highway System Definition

In this study highway types are classified into two-lane two-way highways and multiple-lane two-way highways. Two-lane two-way highways often require closing one lane for a work zone. In such circumstances, vehicles travel in the remaining lane along the work zone, alternating direction within each control cycle. Such a two-lane work zone can be considered as a one-way traffic control system in which queuing and delay processes are analogous to those at a two-phase signalized intersection.

Pavement maintenance on multiple-lane two-way highways often requires closing one or two lanes to set up a work zone. This does not require alternating one-way control as in a two-lane highway work zone because at least one lane is usually still available in the direction of closure. Because work zones in two-lane highways and multiple-lane highways have different delay and queuing patterns, the work zone cost functions are separately developed.

Several work zone alternatives of two-lane highways and multiple-lane highways are demonstrated as follows:

1. Two-Lane Two-Way Highway Work Zone

Schonfeld and Chien (1999) analyzed the effect of longer work zones and cycle times in increasing the user delay and decreasing the total maintenance time and costs due to fewer setups for fewer zones. Note that this case in which traffic flows from both directions are alternated on one lane, without any detour, is considered the first alternative for two-lane roads, labeled Alternative 2.1. The geometries of all alternatives are shown in Figure 3.1.

In the second alternative, we consider the best available alternate route that bypasses the work zone area, so that the original traffic flow on the road is divided between the flow passing along the work zone and the flow through the detour. Thus, in the second alternative considered, the remaining lane is still used for alternating two-way traffic, but traffic from the maintained road also can use the alternate route. In the third alternative all traffic in one direction is diverted to the alternate route, while the remaining lane is only used for traffic in the other direction. Thus, the diverted traffic percentage from one direction of the main road is 0% in Alternative 2.1, 100% in Alternative 2.3 and somewhere between those extremes in Alternative 2.2. In Alternative 2.4, all traffic in both directions is diverted to the alternate route and both lanes are closed for work. The preferred alternative can be determined after evaluating all four alternatives.

(a) Alternative 2.1: without Detour

(b) Alternative 2.2: with Fraction through Detour; $p Q_{l}$ on Detour, $(1-p) Q_{l}$ along Work Zone

(c) Alternative 2.3: Detour for Only One Direction

(d) Alternative 2.4: Two Directions Detoured

Figure 3.1 Geometries of Analyzed Work Zones for Two-Lane Two-Way Highways

2. Multiple-Lane Two-Way Highway Work Zone

Pavement maintenance on multiple-lane, two-way highways usually requires closing one or two lanes to set up a work zone. Chien and Schonfeld (2001) developed a work zone cost function (accounting for user delays, crashes, and agency costs) for fourlane two-way highways without considering detours. That case in which one of the two lanes in one direction is closed, without any detour, is considered Alternative 4.1, as shown in Figure 3.2(a). Here, four-lane highways are classified as "multiple-lane" highways.

Here we consider the best available alternate route that bypasses the work zone area, so that the original flow, Q_{1}, in Direction 1 on the road is divided between the flow passing along the work zone and the flow through the detour, as shown in Figure 3.2(b). Thus, in Alternative 4.2 one lane in Direction 1 is closed, while the remaining lane in Direction 1 is still usable, but traffic in Direction 1 can also use the alternate route. In Alternative 4.3 all traffic in Direction 1 is diverted to the alternate route since both lanes are closed, as shown in Figure 3.2(c). Thus, the diverted traffic percentage from Direction 1 is 0% in Alternative 4.1, 100% in Alternative 4.3 and somewhere between those extremes in Alternative 4.2. In Alternative 4.4, both lanes in Direction 1 are closed for a work zone and all traffic in Direction 1 crosses over to one lane in the opposite direction, as shown in Figure 3.2(d). The preferred alternative can be again determined here after evaluating all four alternatives.

In this chapter a methodology is proposed for minimizing the total cost, including agency cost, user delay cost, and crash cost, and to optimize the work zone length for each alternative, while considering the best available alternate route that bypasses the
work zone. Guidelines for determining the best alternative for different conditions of traffic flow, road characteristics (i.e. detour length, the distance of main road between the beginning and end of detour) and maintenance characteristics (i.e. maintenance setup cost, average maintenance time per kilometer) are developed in the following sections by deriving the minimum cost thresholds between pairs of alternatives with respect to key variables.

3.2 Work Zone Optimization - Two-Lane Two-Way Highway

The basic method followed here for two-lane two-way highway and four-lane two-way highway is to formulate a total cost objective function and use it to optimize work zone lengths at work zones for four alternatives. The queuing delays to users are formulated with deterministic queuing models. Then thresholds among alternatives are derived with respect to key variables, to determine the best alternative for different conditions of traffic flow, road characteristics and maintenance characteristics.

3.2.1 Alternatives and Assumptions

The following four alternatives are considered for two-lane two-way highways in this study:

1. Alternating flow on one-lane, without any detour
2. Alternating flow on one-lane, with a detour
3. One-directional flow on one-lane along work zone; other direction on detour
4. Both directions detoured and both lanes closed for work

(a) Alternative 4.1: No Detour, One of the Two Lanes closed for Q_{l} Traffic

(b) Alternative 4.2: A Fraction of Q_{l} Traffic through Detour

(c) Alternative 4.3: All Q_{1} through Detour, Allowing Work Zone on Both Lanes in Direction 1

(d) Alternative 4.4: Crossover of All Q_{l} into One Lane in Opposite Direction, Allowing Work Zone on Both Lanes in Direction 1
Figure 3.2 Geometries of Analyzed Work Zones for Four-Lane Two-Way Highways

The schematics of these four cases are shown in Figure 3.1.
Several simplifying assumptions made in formulating this problem are listed
below.

1. Traffic moves at a uniform speed through a work zone and at a different uniform speed elsewhere.
2. The effects on speeds of the original detour flows on the relatively short $L_{d l}$ and $L_{d 3}$ in Figures 3.1 are negligible.
3. Queues in both directions will be cleared within each cycle for two-lane two-way highways. Thus, the one-lane work zone capacity exceeds the combined flows of both directions.
4. Possible signal or stop sign delays on the detour in Alternatives 2.2, 2.3, and 2.4 may be neglected.
5. Queue backups to the maintained road along the first detour $L_{d l}$ may be neglected.
6. The detour capacity always exceeds the original detour flow plus diverted flow, so queue delay on the detour may be neglected.
7. The value of user time used in numerical analysis is the weighted average cost of driver and passenger's user time for cars and trucks. In this study vehicle operation costs are not considered separately but may be accounted for in the value of user time.

3.2.2 Model Formulation

Work zone cost functions of four alternatives for two-lane highways are formulated in this section. Alternative 2.1 is based on the study by Schonfeld and Chien
(1999) but the model is modified by adding moving delay cost along work zone and crash cost. Other alternatives, Alternatives 2.2, 2.3, and 2.4, are developed here as extensions of Alternative 2.1 by considering an alternate route.

Alternative 2.1: Flow on one-lane without detour

Schonfeld and Chien (1999) developed a work zone cost function which includes user delay cost and maintenance cost:

$$
\begin{equation*}
C_{T}=C_{M}+C_{U} \tag{3.1}
\end{equation*}
$$

where $C_{T}=$ total cost per lane-kilometer; $C_{M}=$ maintenance cost per lane-kilometer; C_{U} $=$ user delay cost per lane-kilometer.

The user delay cost consists of the queuing delay costs due to a one-way traffic control and the moving delay costs through work zones. The queuing delay $\operatorname{cost} C_{q}$ per maintained lane-kilometer is the total delay per cycle Y in both directions multiplied by the number of cycles N per maintained lane-kilometer and the users' value of time v (in \$/veh-hr):

$$
\begin{equation*}
C_{q}=Y n v \tag{3.2}
\end{equation*}
$$

where $Y=$ summation of the delays (e.g., Y_{1} and Y_{2}) incurred by the traffic flows from directions 1 and 2 per cycle. Y_{1} and Y_{2} can be derived by using deterministic queuing analysis. Schonfeld and Chien (1999) formulated the zone delay cost without any alternate route around the work zone and obtained the following relation:

$$
\begin{equation*}
C_{q}^{2 l}=\frac{\left(z_{3}+z_{4} L\right)\left[Q_{1}\left(\frac{3600}{H}-Q_{1}\right)+Q_{2}\left(\frac{3600}{H}-Q_{2}\right)\right] v}{V\left(\frac{3600}{H}-Q_{1}-Q_{2}\right)} \tag{3.3}
\end{equation*}
$$

where $C_{q}^{2 l}=$ queuing delay cost per lane-kilometer for Alternative $2.1 ; z_{3}=$ setup time; z_{4} = average maintenance time per lane-kilometer; $L=$ work zone length; $Q_{1}=$ hourly flow rate in Direction 1; $Q_{2}=$ hourly flow rate in Direction 2; $H=$ average headway; $V=$ average work zone speed; $v=$ value of user time; and $z_{3}+z_{4} L$ represents the maintenance duration per zone.

Eq.(3.3) represents the queuing delay cost due to one-way traffic control, as proposed by Schonfeld and Chien (1999). Here we consider moving delay cost through work zone. The moving delay cost of the traffic flows Q_{1} and Q_{2}, denoted as C_{v}^{21}, is the cost increment due to the work zone. It is equal to the flow $\left(Q_{1}+Q_{2}\right)$ multiplied by: (1) the average maintenance duration per kilometer, $\frac{z_{3}}{L}+z_{4}$, (2) the travel time difference over zone length with the work zone, $\frac{L}{V}$, and without the work zone, $\frac{L}{V_{0}}$, and (3) the value of time, v. Thus:

$$
\begin{equation*}
C_{v}^{2 l}=\left(Q_{1}+Q_{2}\right)\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L}{V}-\frac{L}{V_{0}}\right) v \tag{3.4}
\end{equation*}
$$

where V_{0} represents the speed on the original road without any work zone.
The user delay cost for Alternative $1 C_{U}^{2 l}$ is equal to the sum of queue delay cost $C_{q}^{2 l}$ and moving delay cost $C_{v}^{2 l}$.

The crash cost incurred by the traffic passing the work zone can be determined from the number of crashes per 100 million vehicle hours n_{a} multiplied by the product of the increasing delay $\left(C_{q}^{2 l} / v+C_{v}^{2 l} / v\right)$ and the average cost per crash v_{a} (Chien and Schonfeld, 2001). The average crash cost per lane-kilometer $C_{a}^{2 l}$ is formulated as:

$$
\begin{equation*}
C_{a}^{2 l}=\left[\frac{\left(z_{3}+z_{4} L\right)\left[Q_{1}\left(\frac{3600}{H}-Q_{1}\right)+Q_{2}\left(\frac{3600}{H}-Q_{2}\right)\right]}{V\left(\frac{3600}{H}-Q_{1}-Q_{2}\right)}+\left(Q_{1}+Q_{2}\right)\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L}{V}-\frac{L}{V_{0}}\right)\right] \frac{n_{a} v_{a}}{10^{8}} \tag{3.5}
\end{equation*}
$$

The maintenance cost per zone is assumed to be $z_{1}+z_{2} L$, where z_{1} = fixed setup cost; and $z_{2}=$ average maintenance cost per additional lane-kilometer. The average maintenance cost per lane-kilometer, C_{M}, is the total maintenance cost per zone divided by the zone length L :

$$
\begin{equation*}
C_{M}=\left(z_{1}+z_{2} L\right) / L=\frac{z_{1}}{L}+z_{2} \tag{3.6}
\end{equation*}
$$

Then the total cost for Alternative 2.1, $C_{T}^{2 l}$, is $C_{M}+C_{U}^{2 l}+C_{a}^{2 l}$. Its optimized work zone length of Alternative $1, L^{* 2 l}$, obtained by setting the partial derivative of the total cost function $C_{T}^{2 l}$ with respect to L equal to zero and solving for L, is:

$$
\begin{equation*}
L^{* 2 l}=\sqrt{\frac{\frac{z_{l}}{v+\frac{n_{a} v_{a}}{10^{8}}}}{\frac{z_{4}\left[Q_{l}\left(\frac{3600}{H}-Q_{1}\right)+Q_{2}\left(\frac{3600}{H}-Q_{2}\right)\right]}{V\left(\frac{3600}{H}-Q_{1}-Q_{2}\right)}+\left(Q_{1}+Q_{2}\right) z_{4}\left(\frac{1}{V}-\frac{1}{V_{0}}\right)}} \tag{3.7}
\end{equation*}
$$

The second derivative of $C_{T}^{2 l}$ with respect to L is positive in this case and the following ones, indicating that function is convex and has a unique global minimum for L.

Alternative 2.2: Flow on one lane as well as a detour

It is assumed in Alternative 2.2 (Figure 3.1(b)) that the fraction p of the flow Q_{1} in Direction 1 is diverted to the alternate route. Then the user queuing delay cost of the remaining flow in Direction 1, $(1-p) Q_{1}$, and Q_{2}, denoted as C_{q}^{22}, has the same formulation as Eq.(3.3) but with (1-p) Q_{1} substituted for Q_{1}.

$$
\begin{equation*}
C_{q}^{22}=\frac{\left(z_{3}+z_{4} L\right)\left[(1-p) Q_{1}\left(\frac{3600}{H}-(1-p) Q_{1}\right)+Q_{2}\left(\frac{3600}{H}-Q_{2}\right)\right] v}{V\left(\frac{3600}{H}-(1-p) Q_{1}-Q_{2}\right)} \tag{3.8}
\end{equation*}
$$

The user moving delay cost of the remaining traffic flow in Direction 1, (1-p) Q_{1}, and Q_{2}, denoted as $C_{v(l-p) 2}^{22}$, is the cost increment due to the work zone. It has the same formulation as Eq.(3.4) but with (1-p) $Q_{1}+Q_{2}$ substituted for $Q_{1}+Q_{2}$.

$$
\begin{equation*}
C_{v(1-p) 2}^{22}=\left((1-p) Q_{1}+Q_{2}\right)\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L}{V}-\frac{L}{V_{0}}\right) v \tag{3.9}
\end{equation*}
$$

The user moving delay cost of the diverted flow $p Q_{l}$ from Direction 1, denoted as $C_{v p}^{22}$, is equal to the flow $p Q_{l}$ multiplied by: (1) the average maintenance duration per kilometer, $\frac{z_{3}}{L}+z_{4}$, which is the maintenance duration per zone, $z_{3}+z_{4} L$, divided by work zone L, (2) the time difference between the time vehicles through the detour, $\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}$, and the time vehicles through the maintained road AB without work zone, $\frac{L_{t}}{V_{0}}$, and (3) the value of time, v. Thus:

$$
\begin{equation*}
C_{v p}^{22}=p Q_{l}\left(\frac{z_{3}}{L}+z_{4}\right)\left[\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{0}}\right] v \tag{3.10}
\end{equation*}
$$

where $L_{d 1}, L_{d 2}, L_{d 3}$ are the lengths of the first, second and third segments of the detour shown in Figure 3.1. V_{0} represents the speed on the maintained road without any work zone and $V_{d}^{* 3}$ is the detour speed affected by diverted traffic in Direction 3 in Alternative 2.2. Both speeds are computed with Eq.(3.81), derived below in Section 3.5.

In addition to delay costs of flows remaining on the maintained road, the moving delay cost to the original flow on the detour, Q_{3}, as affected by the $p Q_{1}$, is also
considered. Denoted as $C_{v 3}^{22}$, it equals the flow Q_{3} multiplied by: (1) the average maintenance duration per kilometer, $\frac{z_{3}}{L}+z_{4}$, (2) the travel time difference over $L_{d 2}$ with the diverted flow $p Q_{1}, \frac{L_{d 2}}{V_{d}^{* 3}}$, and without it, $\frac{L_{d 2}}{V_{d 0}}$, and (3) the value of time, v. Thus:

$$
\begin{equation*}
C_{v 3}^{22}=Q_{3}\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L_{d 2}}{V_{d}^{3}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{3.11}
\end{equation*}
$$

where $V_{d 0}$ represents the original speed on $L_{d 2}$ unaffected by $p Q_{1}$.
The combined user delay cost for the maintained road AB and the detour can be derived as:

$$
\begin{equation*}
C_{v}^{22}=C_{q}^{22}+C_{v(1-p) 2}^{22}+C_{v p}^{22}+C_{v 3}^{22} \tag{3.12}
\end{equation*}
$$

The crash cost per maintained kilometer for, C_{a}^{22}, is:

$$
\begin{equation*}
C_{a}^{22}=\frac{\left(C_{q}^{22}+C_{v(l-p) 2}^{22}+C_{v p}^{22}+C_{v 3}^{22}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{3.13}
\end{equation*}
$$

Then the total cost for Alternative 2.2, C_{T}^{22}, is $C_{M}+C_{U}^{22}+C_{a}^{22}$. Its optimized work zone length $L^{* 22}$ is obtained by setting the partial derivative of C_{T}^{22} with respect to L equal to zero and then solving for L. This yields:

$$
\begin{equation*}
L^{* 22}=\sqrt{\frac{\frac{z_{1}}{v+\frac{n_{a} v_{a}}{10^{8}}}+p Q_{1} z_{3}\left(\frac{L_{d 1}+L_{d 3}-L_{t}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}\right)+Q_{3} z_{3}\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right)}{\frac{z_{4}\left[(1-p) Q_{1}\left(\frac{3600}{H}-(1-p) Q_{1}\right)+Q_{2}\left(\frac{3600}{H}-Q_{2}\right)\right]}{V\left(\frac{3600}{H}-(1-p) Q_{1}-Q_{2}\right)}+\left[(1-p) Q_{1}+Q_{2}\right] z_{4}\left(\frac{1}{V}-\frac{1}{V_{0}}\right)}} \tag{3.14}
\end{equation*}
$$

The second derivative of C_{T}^{22} with respect to L is also positive in this case and the following ones, indicating that function is convex and has a unique global minimum for L.

Alternative 2.3: One direction along the work zone and the other detoured

Here it is assumed that the entire flow Q_{l} in Alternative 2.3 is diverted to the alternate route. Then the user moving delay cost in Direction 1, denoted as $C_{v l}^{23}$, has the same formulation as Eq. (3.10) but with Q_{l} substituted for $p Q_{l}$.

$$
\begin{equation*}
C_{v l}^{23}=Q_{l}\left(\frac{z_{3}}{L}+z_{4}\right)\left[\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{0}}\right] v \tag{3.15}
\end{equation*}
$$

The user moving delay cost of the traffic flow Q_{2}, denoted as $C_{v 2}^{23}$, is the cost increment due to the work zone. It is equal to the flow Q_{2} multiplied by: (1) the average maintenance duration per kilometer, $\frac{z_{3}}{L}+z_{4}$, (2) the time difference over section AB (in Figure 3.1(c)) with the work zone, $\frac{L_{1}+L_{2}}{V_{0}}+\frac{L}{V}$, and without the work zone, $\frac{L_{t}}{V_{0}}$, and (3) the value of time, v. Thus:

$$
\begin{align*}
C_{v 2}^{23} & =Q_{2}\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L_{1}+L_{2}}{V_{0}}+\frac{L}{V}-\frac{L_{t}}{V_{0}}\right) v \tag{3.16}\\
& =Q_{2}\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L}{V}-\frac{L}{V_{0}}\right) v
\end{align*}
$$

The moving delay cost $C_{v 3}^{23}$ of the original flow Q_{3} in Direction 3, as affected by the Q_{1}, is also considered. It has the same formulation as Eq. (3.11) but $V_{d}^{* 3}$ is affected by $p Q_{1}$ in Alternative 2.2 and by Q_{1} in Alternative 2.3.

$$
\begin{equation*}
C_{v 3}^{23}=Q_{3}\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{3.17}
\end{equation*}
$$

The total user delay cost including original road and detour can be determined as follows:

$$
\begin{equation*}
C_{v}^{23}=C_{v 1}^{23}+C_{v 2}^{23}+C_{v 3}^{23} \tag{3.18}
\end{equation*}
$$

where $C_{U}^{23}=$ user delay cost per kilometer per lane for Alternative 2.3.
The crash cost per maintained kilometer for, C_{a}^{23}, is:

$$
\begin{equation*}
C_{a}^{23}=\frac{\left(C_{v 1}^{23}+C_{v 2}^{23}+C_{v 3}^{23}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{3.19}
\end{equation*}
$$

Then the total cost for Alternative 2.3, C_{T}^{23}, is $C_{M}+C_{U}^{23}+C_{a}^{23}$. Its optimized work zone length $L^{* 23}$ is then found to be:

$$
\begin{equation*}
L^{* 23}=\sqrt{\frac{z_{1}+\left[Q_{1} z_{3}\left(\frac{L_{d 1}+L_{d 3}-L_{t}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}\right)+Q_{3} z_{3}\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right)\right]\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)}{Q_{2} z_{4}\left(\frac{1}{V}-\frac{1}{V_{0}}\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)}} \tag{3.20}
\end{equation*}
$$

Because the second derivatives $\partial C_{T}^{21} / \partial L^{2}, ~ \partial C_{T}^{22} / \partial L^{2}, ~ \partial C_{T}^{23} / \partial L^{2}$ of all three objective functions C_{T}^{21}, C_{T}^{22} and C_{T}^{23} are positive, those functions are convex and $L^{* 21}, L^{* 22}$ and $L^{* 23}$ are global optima.

Alternative 2.4: Both directions detoured and both lanes closed for work

Here it is assumed that the entire flows Q_{1} and Q_{2} are diverted to the alternate route as both lanes between A and B are entirely closed for maintenance. Then the user moving delay cost in Direction 1, denoted as $C_{v l}^{24}$, has the same formulation as Eq.(3.9) but with Q_{I} substituted for $p Q_{I}$.

$$
\begin{equation*}
C_{v l}^{24}=Q_{l}\left(\frac{z_{3}}{L}+z_{4}\right)\left[\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{0}}\right] v \tag{3.21}
\end{equation*}
$$

The user moving delay cost of the flow Q_{2}, denoted as $C_{v 2}^{24}$, has the same formulation as Eq.(3.21) but with Q_{2} substituted for $p Q_{1}$ and with $V_{d}^{* 4}$ substituted for $V_{d}^{* 3}$.

$$
\begin{equation*}
C_{v 2}^{24}=Q_{2}\left(\frac{z_{3}}{L}+z_{4}\right)\left[\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 4}}-\frac{L_{t}}{V_{0}}\right] v \tag{3.22}
\end{equation*}
$$

where $V_{d}^{* 4}$ is the detour speed in Direction 4 affected by Q_{2}.

The moving delay cost $C_{v 3}^{24}$ of the original flow Q_{3} in Direction 3, as affected by the Q_{1}, is also considered. It has the same formulation as Eq.(3.17):

$$
\begin{equation*}
C_{v 3}^{24}=Q_{3}\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{3.23}
\end{equation*}
$$

Similarly, the delay cost $C_{v 4}^{24}$ of the original flow Q_{4} in Direction 4, as affected by the Q_{2}, is considered as well. It has the same formulation as Eq.(3.23) but with Q_{4} substituted for Q_{3} and $V_{d}^{* 4}$ substituted for $V_{d}^{* 3}$.

$$
\begin{equation*}
C_{v 4}^{24}=Q_{4}\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L_{d 2}}{V_{d}^{* 4}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{3.24}
\end{equation*}
$$

It is assumed here that Q_{3} and Q_{4} are equal so that the original detour speeds for Direction 3 and 4 are equal, $V_{d o}$, Those speeds, $V_{d o}$, will be derived in Eq.(3.81).

The crash cost per maintained kilometer for, C_{a}^{24}, is:

$$
\begin{equation*}
C_{a}^{24}=\frac{\left(C_{v 1}^{24}+C_{v 2}^{24}+C_{v 3}^{24}+C_{v 4}^{24}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{3.25}
\end{equation*}
$$

The total user delay cost C_{U}^{24} can be determined as follows:

$$
\begin{equation*}
C_{v}^{24}=C_{v 1}^{24}+C_{v 2}^{24}+C_{v 3}^{24}+C_{v 4}^{24}+C_{a}^{24} \tag{3.26}
\end{equation*}
$$

Because Alternative 2.4 is a two-lane maintenance work zone, the maintenace cost for Alternative 2.4 differs from that of other one-lane alternatives. Here we define the parameter α to be a reduction factor that is equal to the maintenance cost for two lanes divided by the maintenance cost for one lane. It allows for the possibility that resurfacing cost per lane-kilometer may decrease when two adjacent lanes are resurfaced together. The maintenace cost per lane-kilometer is equal to the maintenance cost per
zone $z_{1}+z_{2} L$ multiplied by α (for two-lane maintenance cost), and divided by (1) zone length L, (2) number of lanes, 2 . The maintenance cost C_{M} is:

$$
\begin{equation*}
C_{M}=\frac{1}{2} \alpha\left(\frac{z_{1}}{L}+z_{2}\right) \tag{3.27}
\end{equation*}
$$

In the numerical examples of this study, α is assumed to be equal to 2 . Then the total cost for Alternative 2.4, C_{T}^{24}, is $C_{M}+C_{U}^{24}$. The first and second partial derivatives of C_{T}^{4} are then found to be:

$$
\begin{gather*}
\frac{\partial C_{T}^{24}}{\partial L}=-\left[\frac{z_{1}}{L^{2}}+\frac{Q_{1} z_{3}}{L^{2}}\left(\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{0}}\right) v+\frac{Q_{2} z_{3}}{L^{2}}\left(\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 4}}-\frac{L_{t}}{V_{0}}\right) v+\right. \tag{3.28a}\\
\left.\frac{Q_{3} z_{3}}{L^{2}}\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) v+\frac{Q_{4} z_{3}}{L^{2}}\left(\frac{L_{d 2}}{V_{d}^{* 4}}-\frac{L_{d 2}}{V_{d 0}}\right) v\right]<0 \\
\frac{\partial^{2} C_{T}^{24}}{\partial L^{2}}=2 \frac{z_{1}}{L^{3}}+2 \frac{Q_{1} z_{3}}{L^{3}}\left(\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{0}}\right) v+2 \frac{Q_{2} z_{3}}{L^{3}}\left(\frac{L_{d l}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 4}}-\frac{L_{t}}{V_{0}}\right) v+ \tag{3.28b}\\
2 \frac{Q_{3} z_{3}}{L^{3}}\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) v+2 \frac{Q_{4} z_{3}}{L^{3}}\left(\frac{L_{d 2}}{V_{d}^{* 4}}-\frac{L_{d 2}}{V_{d 0}}\right) v>0
\end{gather*}
$$

The first partial derivative of C_{T}^{24} is negative and the second partial derivative is positive. Therefore the function C_{T}^{24} is convex and has a unique global optimum for zone length L_{t}.

3.3 Work Zone Optimization - Four-Lane Two-Way Highway

3.3.1 Alternatives and Assumptions

The following four alternatives are considered for four-lane two-way highways in this study:

1. There is no detour and one of the two lanes is closed for Q_{1} traffic.
2. A fraction of Q_{1} traffic is diverted through detour.
3. All of Q_{1} is diverted through detour, allowing work zone on both lanes in Direction 1.
4. All of Q_{l} crosses over into one lane in the opposite direction, allowing work on both lanes in Direction 1.

The geometries of these four cases are shown in Figure 3.2.
Several simplifying assumptions made in formulating this problem are listed
below.

1. Traffic moves at a uniform speed through a work zone and at a different uniform speed elsewhere.
2. The effects on speeds of the original detour flows on the relatively short $L_{d l}$ and $L_{d 3}$ in Figures 3.2 are negligible.
3. Possible signal or stop sign delays on the detour in Alternatives 4.2, 4.3 may be neglected.
4. Queue backups to the maintained road along the first detour $L_{d l}$ may be neglected.
5. The detour capacity always exceeds the original detour flow plus diverted flow, so queue delay on the detour may be neglected.

3.3.2 Model Formulation

Work zone cost functions of four alternatives for four-lane highways are formulated in this section. Alternative 4.1 is based on the study by Chien and Schonfeld (2001). Other alternatives, Alternatives 4.2, 4.3, and 4.4, are developed here as extensions of Alternative 4.1 by considering an alternate route or crossover flow to the opposite direction.

Alternative 4.1: No Detour and One of the Two Lanes closed for Q_{1} Traffic

Chien and Schonfeld (2001) developed a work zone cost function, which includes the user delay, the crash, and the agency costs, for four-lane two-way highway without considering a detour (Figure 3.2(a)). The user delay cost consists of the queuing delay costs upstream of work zones and the moving delay costs through work zones. The following variables are defined:
$Q_{1}=$ approaching traffic flow in Direction 1 of work zone maintained (veh $/ \mathrm{hr}$)
$c_{w}=$ work zone capacity (veh/hr)
$D=$ maintenance duration per zone
If Q_{l} exceeds the work zone capacity c_{w}, a queue forms, which then dissipates when the closed lane is open again, shown in Figure 3.3. The area of A, queue length during D, is equal to the area of B , the number of dissipated vehicles. The queue dissipation time t_{d} is:

$$
\begin{equation*}
t_{d}=\frac{\left(Q_{l}-c_{w}\right) D}{\left(c_{0}-Q_{l}\right)} \tag{3.29}
\end{equation*}
$$

where c_{0} represents the road capacity in normal (two lanes) conditions in Direction 1 without work zone.

The queuing delay cost per maintained kilometer for Alternative 4.1, $C_{q}^{4 l}$, is queue delay $t_{q}^{4 l}$ multiplied by the average delay cost v and divided by L :

$$
\begin{equation*}
C_{q}^{4 l}=\frac{t_{q}^{4 l} v}{L} \tag{3.30}
\end{equation*}
$$

Figure 3.3 Queue Length for Four-lane Highway Work Zone
(Chien and Schonfeld, 2001)
where $t_{q}^{4 l}=$ queue delay incurred by the approaching traffic flow Q_{l} for Alternative
4.1 while work on one zone is completed and the queue is dissipated, which is equal to the area C in Figure 3.3. If Q_{l} is less than the maximum discharge rate of work zone, c_{w}, the queue delay t_{q}^{41} is neglected. If Q_{l} is greater than c_{w}, the queue delay t_{q}^{41} is:

$$
\begin{align*}
t_{q}^{4 l} & \left.=\frac{1}{2}\left(D+t_{d}\right)\left[\left(Q_{l}-c_{w}\right) D\right)\right] \tag{3.31}\\
& =\frac{1}{2}\left(1+\frac{Q_{1}-c_{w}}{c_{0}-Q_{l}}\right)\left(Q-c_{w}\right)\left(z_{3}+z_{4} L\right)^{2}
\end{align*}
$$

Then:

$$
\begin{array}{ll}
C_{q}^{4 I}=0 & \text { when } Q_{l} \leq c_{w} \\
C_{q}^{4 I}=\frac{v}{2 L}\left(1+\frac{Q_{l}-c_{w}}{c_{0}-Q_{l}}\right)\left(Q_{l}-c_{w}\right)\left(z_{3}+z_{4} L\right)^{2} & \text { when } Q_{l}>c_{w} \tag{3.32b}
\end{array}
$$

The moving delay cost per maintained kilometer C_{v}^{41} is the moving delay t_{m}^{41} multiplied by the average delay cost v and divided by L :

$$
\begin{equation*}
C_{v}^{4 l}=\frac{t_{m}^{4 l} v}{L} \tag{3.33}
\end{equation*}
$$

where $t_{m}^{4 l}=$ moving delay incurred by the approaching traffic flow $Q_{1} . t_{m}^{4 l}$ is a function of the difference between the travel time on a road with and without a work zone:

$$
\begin{array}{ll}
t_{m}^{4 l}=\left(\frac{L}{V_{w}}-\frac{L}{V_{a}}\right) Q_{l} D & \text { when } Q_{l} \leq c_{w} \\
t_{m}^{4 l}=\left(\frac{L}{V_{w}}-\frac{L}{V_{a}}\right) c_{w} D & \text { when } Q_{l}>c_{w} \tag{3.34b}
\end{array}
$$

where $V_{a}=$ average approaching speed; $V_{w}=$ average work zone speed. If Q_{1} is greater than c_{w}, the variable Q_{l} is reduced by c_{w}, because the maximum flow allowed to pass through the work zone is c_{w}. Then:

$$
\begin{array}{ll}
C_{v}^{4 l}=\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) Q_{l}\left(z_{3}+z_{4} L\right) v & \text { when } Q_{l} \leq c_{w} \\
C_{v}^{4 l}=\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) c_{w}\left(z_{3}+z_{4} L\right) v & \text { when } Q_{l}>c_{w} \tag{3.35b}
\end{array}
$$

Total user delay cost per maintained lane kilometer for Alternative 4.1 C_{U}^{41} is:

$$
\begin{equation*}
C_{U}^{4 I}=C_{q}^{4 I}+C_{v}^{4 I} \tag{3.36}
\end{equation*}
$$

The crash cost incurred by the traffic passing the work zone can be determined from the number of crashes per 100 million vehicle hour n_{a} multiplied by the product of the increasing delay $\left(t_{q}^{4 l}+t_{m}^{4 l}\right)$ and the average cost per crash v_{a} and then divided by work zone length L (Chien and Schonfeld, 2001). Average crash cost per maintained kilometer $C_{a}^{4 l}$ is formulated as:

$$
\begin{equation*}
C_{a}^{41}=\frac{\left(t_{q}^{41}+t_{m}^{41}\right)}{L} \frac{n_{a} v_{a}}{10^{8}} \tag{3.37}
\end{equation*}
$$

Then:

$$
\begin{array}{rlrl}
C_{a}^{4 l}= & \left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) Q_{l}\left(z_{3}+z_{4} L\right) \frac{n_{a} v_{a}}{10^{8}} & \text { when } Q_{l} \leq c_{w} \\
C_{a}^{4 l}= & {\left[\frac{1}{2 L}\left(1+\frac{Q_{l}-c_{w}}{c_{0}-Q_{l}}\right)\left(Q_{l}-c_{w}\right)\left(z_{3}+z_{4} L\right)^{2}\right.} & \tag{3.38b}\\
& \left.+\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) c_{w}\left(z_{3}+z_{4} L\right)\right] \frac{n_{a} v_{a}}{10^{8}} & \text { when } Q_{l}>c_{w} &
\end{array}
$$

Total cost is:

$$
\begin{equation*}
C_{T}^{41}=C_{M}+C_{U}^{4 I}+C_{a}^{41} \tag{3.39}
\end{equation*}
$$

Then:

$$
\begin{align*}
C_{T}^{4 l} & =\left(\frac{z_{1}}{L}+z_{2}\right)+\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) Q_{l}\left(z_{3}+z_{4} L\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right) \quad \text { when } Q_{1} \leq c_{w} \tag{3.40a}\\
C_{T}^{4 l} & =\left(\frac{z_{1}}{L}+z_{2}\right)+\left[\frac{1}{2 L}\left(1+\frac{Q_{l}-c_{w}}{c_{0}-Q_{l}}\right)\left(Q_{l}-c_{w}\right)\left(z_{3}+z_{4} L\right)^{2}\right. \tag{3.40b}\\
& \left.+\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) c_{w}\left(z_{3}+z_{4} L\right)\right]\left(v+\frac{n_{a} v_{a}}{10^{8}}\right) \quad \text { when } Q_{1}>c_{w}
\end{align*}
$$

The resulting optimized work zone length $L^{* 4 l}$ is then found to be:

$$
\begin{align*}
L^{* 41}=\sqrt{\frac{z_{1}}{z_{4} Q_{1} P_{3} P_{4}}} & \text { when } Q_{1} \leq c_{w} \tag{3.41a}\\
L^{* 41}=\sqrt{\frac{2 z_{1}+P_{1} P_{2} P_{3} z_{3}^{2}}{P_{1} P_{2} P_{3} z_{4}^{2}+2 P_{3} P_{4} c_{w} z_{4}}} & \text { when } Q_{1}>c_{w} \tag{3.41b}
\end{align*}
$$

where

$$
\begin{align*}
& P_{1}=Q_{1}-c_{w} \tag{3.42}\\
& P_{2}=1+\frac{Q_{1}-c_{w}}{c_{0}-Q_{1}} \tag{3.43}
\end{align*}
$$

$$
\begin{align*}
& P_{3}=v+\frac{n_{a} v_{a}}{10^{8}} \tag{3.44}\\
& P_{4}=\frac{1}{V_{w}}-\frac{1}{V_{a}} \tag{3.45}
\end{align*}
$$

The second derivative of $C_{T}^{4 l}$ with respect to L is positive in this case and the following ones, indicating that function is convex and has a unique global minimum for L.

Alternative 4.2: A Fraction of Q_{1} Traffic through Detour

It is assumed in Alternative 4.2 (Figure 3.2(b)) that the fraction p of the flow Q_{1} in Direction 1 is diverted to the alternate route. In this section $p Q_{I}$ and $(1-p) Q_{l}$ are considered separately. The user delay costs include queuing delay and moving delay cost.

Total user delay cost per maintained lane kilometer for $(1-p) Q_{I}, C_{U(1-p)}^{42}$, is:

$$
\begin{equation*}
C_{U(1-p)}^{42}=C_{q(1-p)}^{42}+C_{v(1-p)}^{42} \tag{3.46}
\end{equation*}
$$

The user queuing delay cost of the remaining flow in Direction 1, (1-p) Q_{1}, denoted as $C_{q(1-p)}^{42}$, is the queue delay $t_{q(1-p)}^{42}$ for $(1-p) Q_{1}$ multiplied by the average delay cost v and divided by L. $t_{q(1-p)}^{42}$, has the same formulation as Eq.(3.31) but with (1-p) Q_{1} substituted for Q_{I} :

$$
\begin{array}{ll}
t_{q(1-p)}^{42}=0 & \text { when }(1-p) Q_{1} \leq c_{w}(3.47 \mathrm{a}) \\
t_{q(1-p)}^{42}=\frac{1}{2}\left(1+\frac{(1-p) Q_{1}-c_{w}}{c_{0}-(1-p) Q_{1}}\right)\left((1-p) Q-c_{w}\right)\left(z_{3}+z_{4} L\right)^{2} & \text { when }(1-p) Q_{1}>c_{w}(3.47 \mathrm{~b})
\end{array}
$$

Then $C_{q(l-p)}^{42}$ has the same formulation as Eq. (3.32) but with (1-p) Q_{l} substituted for Q_{i} :

$$
C_{q(l-p)}^{42}=0
$$

$$
\text { when }(1-p) Q_{l} \leq c_{w}(3.48 \mathrm{a})
$$

$$
\begin{equation*}
C_{q(l-p)}^{42}=\frac{v}{2 L}\left(1+\frac{(1-p) Q_{1}-c_{w}}{c_{0}-(1-p) Q_{l}}\right)\left((1-p) Q_{l}-c_{w}\right)\left(z_{3}+z_{4} L\right)^{2} \text { when }(1-p) Q_{l}>c_{w}(3 \tag{3.48b}
\end{equation*}
$$

The moving delay cost per maintained kilometer $C_{v(1-p)}^{42}$ for $(1-p) Q_{1}$ is the moving delay $t_{m(l-p)}^{42}$ for $(1-p) Q_{l}$ multiplied by the average delay cost v_{d} and divided by L. $t_{m(1-p)}^{42}$ has the same formulation as Eq.(3.34) but with $(1-p) Q_{1}$ substituted for Q_{1} :

$$
\begin{array}{ll}
t_{m(1-p)}^{42}=\left(\frac{L}{V_{w}}-\frac{L}{V_{a}}\right)(1-p) Q_{l} D & \text { when }(1-p) Q_{l} \leq c_{w} \\
t_{m(1-p)}^{42}=\left(\frac{L}{V_{w}}-\frac{L}{V_{a}}\right) c_{w} D & \text { when }(1-p) Q_{l}>c_{w} \tag{3.49b}
\end{array}
$$

Then, $C_{v(1-p)}^{42}$ has the same formulation as Eq.(3.35) but with (1-p) Q_{l} substituted for Q_{1} :

$$
\begin{array}{ll}
C_{v(1-p)}^{42}=\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right)(1-p) Q_{l}\left(z_{3}+z_{4} L\right) v & \text { when }(1-p) Q_{1} \leq c_{w} \\
C_{v(1-p)}^{42}=\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) c_{w}\left(z_{3}+z_{4} L\right) v & \text { when }(1-p) Q_{1}>c_{w} \tag{3.50b}
\end{array}
$$

The user delay cost per maintained lane kilometer for the detoured flow in
Direction 1, $p Q_{1}$, denoted as C_{u}^{p}, is equal to:

$$
\begin{equation*}
C_{U p}^{42}=C_{q p}^{42}+C_{v p}^{42} \tag{3.51}
\end{equation*}
$$

where $C_{q p}^{42}$ represents the queuing delay for $p Q_{l}$ and $C_{v p}^{42}$ represents the moving delay for $p Q_{1}$. We assume the detour capacity c_{d} always exceeds $p Q_{1}$ plus Q_{3}, so the queuing delay of $p Q_{I}$ is zero.

The user moving delay cost of the diverted flow $p Q_{I}$ from Direction $1, C_{v p}^{42}$, is equal to the flow $p Q_{l}$ multiplied by: (1) the average maintenance duration per kilometer,
$\frac{z_{3}}{L}+z_{4}$, which is the maintenance duration per zone, $z_{3}+z_{4} L$, divided by work zone L, (2) the time difference between the time vehicles through the detour, $\frac{L_{d 1}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V_{d}^{* 2}}$, and the time vehicles through the maintained road AB without work zone, $\frac{L_{t}}{V_{a}}$, and (3) the value of time, v. Thus:

$$
\begin{equation*}
C_{v p}^{42}=p Q_{l}\left(\frac{z_{3}}{L}+z_{4}\right)\left[\frac{L_{d l}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{a}}\right] v \tag{3.52}
\end{equation*}
$$

Therefore, the user delay cost for $p Q_{l}$ is:

$$
\begin{equation*}
C_{U p}^{42}=C_{q p}^{42}+C_{v p}^{42}=C_{v p}^{42}=p Q_{l}\left(\frac{z_{3}}{L}+z_{4}\right)\left[\frac{L_{d 1}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{a}}\right] v \tag{3.53}
\end{equation*}
$$

where $V_{d}^{* 3}$ is the detour speed affected by diverted flow $p Q_{l}$ in Direction 3 in Alternative 4.2

The additional moving delay cost of the original flow Q_{3} in Direction 3, as affected by the detoured flow Q_{1}, is denoted $C_{v 3}^{42}$. It has the same formulation as Eq.(3.11).

$$
\begin{equation*}
C_{v 3}^{42}=Q_{3}\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{3.54}
\end{equation*}
$$

The total user delay cost C_{U}^{42} can be determined as follows:

$$
\begin{equation*}
C_{v}^{42}=C_{U(1-p)}^{42}+C_{U p}^{42}+C_{v 3}^{42} \tag{3.55}
\end{equation*}
$$

The average crash cost per maintained kilometer for $(1-p) Q_{1}, C_{a(1-p)}^{42}$, is:

$$
\begin{equation*}
C_{a(l-p)}^{42}=\frac{\left(t_{q(l-p)}^{42}+t_{m(l-p)}^{42}\right)}{L} \frac{n_{a} v_{a}}{10^{8}} \tag{3.56}
\end{equation*}
$$

Then:

$$
\begin{array}{rlr}
C_{a(l-p)}^{42} & =\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right)(1-p) Q_{l}\left(z_{3}+z_{4} L\right) \frac{n_{a} v_{a}}{10^{8}} & \text { when }(1-p) Q_{1} \leq c_{w} \\
C_{a(1-p)}^{42} & =\left[\frac{1}{2 L}\left(1+\frac{(1-p) Q_{1}-c_{w}}{c_{0}-(1-p) Q_{1}}\right)\left((1-p) Q_{1}-c_{w}\right)\left(z_{3}+z_{4} L\right)^{2}\right. \tag{3.57b}\\
& \left.+\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) c_{w}\left(z_{3}+z_{4} L\right)\right] \frac{n_{a} v_{a}}{10^{8}} & \text { when }(1-p) Q_{l}>c_{w}
\end{array}
$$

The average crash cost per maintained kilometer for $p Q_{1}, C_{a p}^{42}$, is:

$$
\begin{equation*}
C_{a p}^{42}=\frac{\left(t_{q p}^{42}+t_{m p}^{42}\right)}{L} \frac{n_{a} v_{a}}{10^{8}} \tag{3.58}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{m p}^{42}=\frac{C_{v p}^{42} L}{v_{d}}=\left(\frac{L_{d 1}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{a}}\right) p Q_{l}\left(z_{3}+z_{4} L\right) \quad \text { when } p Q_{1} \leq c_{d} \tag{3.59}
\end{equation*}
$$

and $t_{q p}^{42}=0$. Then:

$$
\begin{equation*}
C_{a p}^{42}=\left(\frac{L_{d 1}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V_{d}^{3}}-\frac{L_{t}}{V_{a}}\right) p Q_{l}\left(\frac{z_{3}}{L}+z_{4}\right) \frac{n_{a} v_{a}}{10^{8}} \quad \text { when } p Q_{1} \leq c_{d} \tag{3.60}
\end{equation*}
$$

The average crash cost per maintained kilometer for $Q_{3}, C_{a 3}^{42}$, is

$$
\begin{equation*}
C_{a 3}^{42}=\frac{t_{m 3}^{42}}{L} \frac{n_{a} v_{a}}{10^{8}} \tag{3.61}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{m 3}^{42}=\frac{C_{v 3}^{42} L}{v}=Q_{3}\left(z_{3}+z_{4} L\right)\left(\frac{L_{d 2}}{V_{d}^{43}}-\frac{L_{d 2}}{V_{d 0}}\right) \tag{3.62}
\end{equation*}
$$

Then:

$$
\begin{equation*}
C_{a 3}^{42}=Q_{3}\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) \frac{n_{a} v_{a}}{10^{8}} \tag{3.63}
\end{equation*}
$$

The total crash cost C_{a}^{42} can be determined as follows:

$$
\begin{equation*}
C_{a}^{42}=C_{a(l-p)}^{42}+C_{a p}^{42}+C_{a 3}^{42} \tag{3.64}
\end{equation*}
$$

Then, the total cost is:

$$
\begin{equation*}
C_{T}^{42}=C_{M}+C_{U}^{42}+C_{a}^{42}=C_{M}+\left(C_{U(1-p)}^{42}+C_{U p}^{42}+C_{v 3}^{42}\right)+\left(C_{a(1-p)}^{42}+C_{a p}^{42}+C_{a 3}^{42}\right) \tag{3.65}
\end{equation*}
$$

The resulting optimized work zone length is:

$$
\begin{align*}
& L^{* * 2}=\sqrt{\frac{z_{1}+p Q_{1} z_{3}\left(\frac{L_{d 1}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V^{* 2}}-\frac{L_{t}}{V_{a}}\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)+Q_{3} z_{3}\left(\frac{L_{d 2}}{V_{d}^{2 *}}-\frac{L_{d 2}}{V_{d 0}}\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)}{\left(\frac{1}{V_{w}}-\frac{l}{V_{a}}\right)(1-p) Q_{l} z_{4}\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)}} \\
& \text { when }(1-p) Q_{l} \leq c_{w} \tag{3.66a}
\end{align*}
$$

$$
L^{* 2}=\sqrt{\frac{z_{1}+\left[\left(1+\frac{(1-p) Q_{1}-c_{w}}{c_{0}-(1-p) Q_{l}}\right)\left((1-p) Q_{1}-c_{w} \frac{z_{3}^{2}}{2}+p Q_{1} z_{3}\left(\frac{L_{d 1}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V^{* 2}}-\frac{L_{t}}{V_{a}}\right)\right]\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)+Q_{3} z_{3}\left(\frac{L_{d 2}}{V_{d}^{* 2}}-\frac{L_{d 2}}{V_{d 0}}\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)\right.}{\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) c_{w} z_{4}\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)+\left(1+\frac{(1-p) Q_{1}-c_{w}}{c_{0}-(1-p) Q_{l}}\right)\left((1-p) Q_{1}-c_{w}\right) \frac{z_{4}^{2}}{2}\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)}}
$$

$$
\begin{equation*}
\text { when }(1-p) Q_{l}>c_{w} \tag{3.66b}
\end{equation*}
$$

The second derivative of C_{T}^{42} with respect to L is also positive in this case and the following ones, indicating that function is convex and has a unique global minimum for L.

Alternative 4.3: All Q_{1} Traffic through Detour, Allowing a Work Zone on Both Lanes

in Direction 1

Here it is assumed that the entire flow Q_{l} in Alternative 4.2 is diverted to the alternate route (Alternative 4.3, Figure 3.2(c)). Then the total cost in Direction 1 has the same formulation as Eq.(3.65) but with Q_{l} substituted for $p Q_{l}$ and p is replaced by 1. Here Q_{1} may be greater than c_{w} because Q_{l} would not pass through work zone. The total cost for Alternative 4.3 is:

$$
\begin{align*}
C_{T}^{43} & =\left(\frac{z_{1}}{L}+z_{2}\right) \\
& +Q_{l}\left(\frac{z_{3}}{L}+z_{4}\right)\left[\frac{L_{d 1}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V_{d}^{* 2}}-\frac{L_{t}}{V_{a}}\right] v \\
& +Q_{3}\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{3.67}\\
& +Q_{I}\left(\frac{L_{d 1}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V_{d}^{* 2}}-\frac{L_{t}}{V_{a}}\right)\left(\frac{z_{3}}{L}+z_{4}\right) \frac{n_{a} v_{a}}{10^{8}} \\
& +Q_{3}\left(\frac{z_{3}}{L}+z_{4}\right)\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) \frac{n_{a} v_{a}}{10^{8}}
\end{align*}
$$

where $V_{d}^{* 3}$ is the detour speed affected by Q_{l} in Direction 3 in Alternative 4.3.

The first and second partial derivatives of C_{T}^{43} are then found to be:

$$
\begin{align*}
\frac{\partial C_{T}^{43}}{\partial L}= & -\left[\frac{z_{1}}{L^{2}}+\frac{Q_{1} z_{3}}{L^{2}}\left(\frac{L_{d 1}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V_{d}^{* 2}}-\frac{L_{t}}{V_{a}}\right) v+\frac{Q_{3} z_{3}}{L^{2}}\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) v\right. \tag{3.68}\\
& \left.+\frac{Q_{1} z_{3}}{L^{2}}\left(\frac{L_{d 1}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V_{d}^{* 2}}-\frac{L_{t}}{V_{a}}\right) \frac{n_{a} v_{a}}{10^{8}}+\frac{Q_{3} z_{3}}{L^{2}}\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) \frac{n_{a} v_{a}}{10^{8}}\right]<0 \\
\frac{\partial^{2} C_{T}^{43}}{\partial L^{2}}= & \frac{2 z_{1}}{L^{3}}+\frac{2 Q_{1} z_{3}}{L^{3}}\left(\frac{L_{d 1}+L_{d 3}}{V_{a}}+\frac{L_{d 2}}{V_{d}^{* 2}}-\frac{L_{t}}{V_{a}}\right) v+2 \frac{Q_{3} z_{3}}{L^{3}}\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{3.69}\\
& +\frac{2 Q_{1} z_{3}}{L^{3}}\left(\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* d}}-\frac{L_{t}}{V_{0}}\right) \frac{n_{a} v_{a}}{10^{8}}+2 \frac{Q_{3} z_{3}}{L^{3}}\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) \frac{n_{a} v_{a}}{10^{8}}>0
\end{align*}
$$

The first partial derivative of C_{T}^{43} is negative and the second partial derivative is positive. Therefore the function C_{T}^{43} is convex and there is no local or global minimum for zone length is between 0 and L_{t}. The minimal cost occurs when the zone length is L_{t}.

Alternative 4.4: Crossover of All Q_{1} Traffic into One Opposite Lane, Allowing a Work

Zone on Both Lanes in Direction 1

Here it is assumed that the entire flow Q_{I} in Alternative 4.1 crosses over to one lane in the opposite direction (Figure 3.2(d)). Both lanes in Direction 1 are closed for work zone. The flow Q_{2} in Direction 2 only uses the remaining lane. In Alternative 4.4,
we assume (1) the vehicles in Q_{1} and Q_{2} along work zone have the same speed, V_{w}, (2) the capacity of each lane in Direction 2 between the start and end of work zone for Q_{l} and Q_{2} is equal to work zone capacity, c_{w}, (3) the distance between the start and end of work zone in Direction 1 is equal to the distance of crossover route through alternate lane in Direction 2.

In Alternative 4.4, the queuing delay and moving delay may occur for either Q_{1} or Q_{2}. Below are all possible combinations for user queuing delay costs, moving delay costs, and crash costs.

$$
\begin{array}{ll}
C_{q j}^{44}=0 & \text { when } Q_{j} \leq c_{w} \\
C_{q j}^{44}=\frac{v}{2 L}\left(1+\frac{Q_{i}-c_{w}}{c_{0}-Q_{l}}\right)\left(Q_{i}-c_{w}\right)\left(z_{3}+z_{4} L\right)^{2} & \text { when } Q_{j}>c_{w} \tag{3.70b}
\end{array} \quad j=1,2
$$

where $C_{q j}^{44}$ is user queuing delay cost for Q_{j}.

$$
\begin{array}{ll}
C_{v j}^{44}=\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) Q_{j}\left(z_{3}+z_{4} L\right) v & \text { when } Q_{j} \leq c_{w} \quad j=1,2 \\
C_{v j}^{44}=\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) c_{w}\left(z_{3}+z_{4} L\right) v & \text { when } Q_{j}>c_{w} \quad j=1,2 \tag{3.71b}
\end{array}
$$

where $C_{v j}^{44}$ is user moving delay cost for Q_{j}.

$$
\begin{array}{rlrl}
C_{a j}^{44}= & \left(\frac{1}{V_{w}}-\frac{l}{V_{a}}\right) Q_{j}\left(z_{3}+z_{4} L\right) \frac{n_{a} v_{a}}{10^{8}} & \text { when } Q_{j} \leq c_{w} & j=1,2 \\
C_{a j}^{44}= & {\left[\frac{1}{2 L}\left(1+\frac{Q_{j}-c_{w}}{c_{0}-Q_{i}}\right)\left(Q_{j}-c_{w}\right)\left(z_{3}+z_{4} L\right)^{2}\right.} & & \tag{3.72b}\\
& \left.+\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right) c_{w}\left(z_{3}+z_{4} L\right)\right] \frac{n_{a} v_{a}}{10^{8}} & \text { when } Q_{j}>c_{w} \quad j=1,2
\end{array}
$$

where $C_{a j}^{44}$ is crash cost for Q_{j}.
The total cost is then:

$$
\begin{align*}
C_{T}^{44} & =C_{M}+C_{U}^{44}+C_{a}^{44} \\
& =C_{M}+\left(C_{U 1}^{44}+C_{U 2}^{44}\right)+\left(C_{a 1}^{44}+C_{a 2}^{44}\right) \tag{3.73}\\
& =C_{M}+C_{q 1}^{44}+C_{v 1}^{44}+C_{q 2}^{44}+C_{v 2}^{44}+C_{a 1}^{44}+C_{a 2}^{44}
\end{align*}
$$

where C_{U}^{44} is total user delay cost per maintained lane kilometer and C_{a}^{44} total crash cost per maintained lane kilometer for Alternative 4.4.

Optimized work zone lengths $L^{* 44}$ are then derived for four combinations of conditions defined by whether Q_{1} and Q_{2} are above or below the capacity c_{w}.
(1) If $Q_{1} \leq c_{w} \& Q_{2} \leq c_{w}$:

$$
\begin{equation*}
L^{* 44}=\sqrt{\frac{z_{1}}{z_{4}\left(Q_{1}+Q_{2}\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right)}} \tag{3.74}
\end{equation*}
$$

(2) If $Q_{1}>c_{w} \& Q_{2} \leq c_{w}$:

$$
\begin{equation*}
L^{* 44}=\sqrt{\frac{z_{1}+\frac{z_{3}^{2}}{2}\left(1+\frac{Q_{1}-c_{w}}{c_{0}-Q_{1}}\right)\left(Q_{1}-c_{w}\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)}{z_{4}\left(c_{w}+Q_{2}\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right)+\frac{z_{4}^{2}}{2}\left(1+\frac{Q_{1}-c_{w}}{c_{0}-Q_{1}}\right)\left(Q_{1}-c_{w}\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)}} \tag{3.75}
\end{equation*}
$$

(3) If $Q_{1} \leq c_{w} \& Q_{2}>c_{w}$:

$$
\begin{equation*}
L^{* 44}=\sqrt{\frac{z_{1}+\frac{z_{3}^{2}}{2}\left(1+\frac{Q_{2}-c_{w}}{c_{0}-Q_{2}}\right)\left(Q_{2}-c_{w}\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)}{z_{4}\left(c_{w}+Q_{1}\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right)+\frac{z_{4}^{2}}{2}\left(1+\frac{Q_{2}-c_{w}}{c_{0}-Q_{2}}\right)\left(Q_{2}-c_{w}\right)\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)}} \tag{3.76}
\end{equation*}
$$

(4) If $Q_{1}>c_{w} \& Q_{2}>c_{w}$:

$$
\begin{equation*}
L^{* 44}=\sqrt{\frac{z_{l}+\frac{z_{3}^{2}}{2}\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)\left[\left(1+\frac{Q_{l}-c_{w}}{c_{0}-Q_{l}}\right)\left(Q_{1}-c_{w}\right)+\left(1+\frac{Q_{2}-c_{w}}{c_{0}-Q_{2}}\right)\left(Q_{2}-c_{w}\right)\right]}{2 z_{4} c_{w}\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)\left(\frac{1}{V_{w}}-\frac{1}{V_{a}}\right)+\frac{z_{q}^{2}}{2}\left(v+\frac{n_{a} v_{a}}{10^{8}}\right)\left[\left(1+\frac{Q_{1}-c_{w}}{c_{0}-Q_{l}}\right)\left(Q_{l}-c_{w}\right)+\left(1+\frac{Q_{2}-c_{w}}{c_{0}-Q_{2}}\right)\left(Q_{2}-c_{w}\right)\right]}} \tag{3.77}
\end{equation*}
$$

Because no alternate path is involved in Alternative 4.4, no detour parameters are shown in Eqs (74), (75), (76), and (77).

3.4 Determination of Work Zone and Detour Speeds

The relations between speed and flow have been extensively researched in past decades. In 1935 Greenshield proposed a parabolic equation for speed-flow curve on the basis of a linear speed-density relationship together with the equation, flow $=$ speed * density. This model was widely used and appeared in the 1965 Highway Capacity Manual (HCM) and the 1985 HCM. However, some objections to Greenshield's model have been made. One is that Greenshield's model did not work with freeway data. The second is that the curve-fitting of this model by current standards of research and empirical data would not be acceptable (Messer et al., 1997). Many studies show that the relationship between speed and flow is divided into three stages: uncongested, queue discharge, and within a queue (Hall, et al., 1992). In the speed-flow curve, speed remains flat as flows increases between half and two-thirds of capacity values, and has a very small decrease in speeds at capacity from those values (Messer et al., 1997). Such a curve is also shown in the 1994 HCM.

Despite its limitations, Greenshied's model is used below, because it is widely used in practice and because alternate traffic flow models would lead to overly complex optimization models later in this study.

In traffic flow theory, the relation among flow Q, density K, and speed V is:
$Q=K V$

The speed function can be formulated by applying Greenshield's model (Gerlough and Huber, 1975):

$$
\begin{equation*}
V=V_{f}-\frac{V_{f}}{K_{j}} K \tag{3.79}
\end{equation*}
$$

where V_{f} is free flow speed, K_{j} is jam density.
Substituting (3.79) into (3.78), we obtain

$$
\begin{equation*}
Q=K_{j} V-\frac{K_{j}}{V_{f}} V^{2} \tag{3.80}
\end{equation*}
$$

Solving the quadratic Eq.(3.80) for the speed V, we obtain two solutions. The first is:

$$
\begin{equation*}
V=\frac{K_{j} V_{f}+\sqrt{\left(K_{j} V_{f}\right)^{2}-4 K_{j} V_{f} Q}}{2 K_{j}} \tag{3.81}
\end{equation*}
$$

Then, $V_{0}, V_{d 0}, V_{d}^{* 3}$ and $V_{d}^{* 4}$ in Alternatives 2.2 and 2.3 or 4.2 and 4.3 can be determined from Eq.(3.81). The other solution of Eq.(3.80) is:

$$
\begin{equation*}
V=\frac{K_{j} V_{f}-\sqrt{\left(K_{j} V_{f}\right)^{2}-4 K_{j} V_{f} Q}}{2 K_{j}} \tag{3.82}
\end{equation*}
$$

which is the speed under forced flow conditions (Gerlough and Huber, 1975). This speed is not used in Case 1 because $V_{0}, V_{d 0}, V_{d}^{* 3}$ and $V_{d}^{* 4}$ are applied based on the assumption that the original road without work zone and detour has enough capacity for steady traffic inflows so that the speeds on the original road $\left(V_{0}\right)$ and detour $\left(V_{d 0}\right)$ are free-flowing speeds. In Chapter 5, the congestion and delay along a detour will be considered when work zone optimization models for time-dependent inflows with a detour are developed.

3.5 Threshold Analysis

In this section the selection of the best alternatives is considered under different situations. Guidelines for selecting the best alternative for different traffic flows, roads and maintenance characteristics are developed by deriving thresholds among those alternatives.
$C_{T}^{*_{1}}, C_{T}^{*_{2}}, C_{T}^{*_{3}}$ and $C_{T}^{*_{4}}$ are the minimized total costs of Alternatives 2.1, 2.2, 2.3 and 2.4, (or Alternatives 4.1, 4.2, 4.3 and 4.4) computed with their respective optimized work zone lengths $L^{* 1}, L^{* 2} L^{* 3}$ and $L^{* 4}$. The threshold between any two alternatives can be obtained by setting their two cost functions equal. For example, Figure 3.4 shows the relation between total cost and detour length. It indicates that Alternative 2.3 is preferable up to a detour length of $T_{32}^{D L}$, beyond which Alternative 2.2 is preferable up to $T_{21}^{D L}$.

Figure 3.4 Total Cost vs. Detour Length

Thresholds with respect to the distance AB , setup cost, average maintenance time, and other input parameters, can be obtained similarly to the detour length thresholds. For some variables or alternatives, if the thresholds are not positive or not located within applicable ranges, then no threshold exists.

3.6 Numerical Analysis - Two-Lane Two-Way Highway

3.6.1 Sensitivity Analysis

The effects of various parameters on work zone length and the preferable alternatives are examined in this section. The baseline numerical values for each variable in this section are defined in Table 3.1.

The optimized solutions for work zone length and total cost are shown in Table 3.2 for various traffic flow combinations. For Alternatives 2.1 and 2.2 , when Q_{1} or Q_{2} increases, the optimized zone length decreases. However, for Alternative 2.3, the optimized zone length increases slightly with Q_{1} and decreases with Q_{2}, because increasing zone length decreases the delay cost of Q_{1} in Eq.(3.15). The optimized zone length ranges from 1.54 to 0.49 km for Alternative $2.1,2.17$ to 0.20 km for Alternative 2.2, 2.3 to 0.74 km for Alternative 2.3, and 5 km for any Alternative 2.4. Table 3.2 shows that the optimized zone length increases with the diverted fraction to the detour from Q_{1}. The combined flow $Q_{1}+Q_{2}$ ranges from 100 to $2,000 \mathrm{vph}$. Note that the optimized zone length and minimized total cost are not available when the combined flow exceeds the work zone capacity 1,200 vph. At the baseline values, Alternative 2.4 dominates all others in Table 3.2, as its optimized total cost is the lowest for any flow combination Q_{1} and Q_{2}.

Table 3.1 Inputs for Numerical Example and Sensitivity Analysis for Two-Lane Two-Way Highway Work Zones

Variable	Description	Values
H	Average headway through work zone area	3 s
K_{j}	Jam density along AB and detour	200 veh/lane $\cdot \mathrm{km}$
$L_{d 1}$	Length of first detour segment	0.5 km
$L_{d 2}$	Length of second detour segment	5 km
$L_{d 3}$	Length of third detour segment	0.5 km
L_{t}	Entire Distance of Maintained Road from A to B	5 km
n_{a}	Number of crashes per 100 million vehicle hour	$40 \mathrm{acc} / 100 \mathrm{mvh}$
Q_{3}	Hourly flow rate in Direction 3	$500 \mathrm{veh} / \mathrm{hr}$
V	Average work zone speed	$50 \mathrm{~km} / \mathrm{hr}$
V_{f}	Free flow speed along AB and detour	$80 \mathrm{~km} / \mathrm{hr}$
v_{a}	Average crash cost	142,000 \$/crash
v	Value of user time	12 \$/veh hr
z_{1}	Fixed setup cost	1,000 \$/zone
z_{2}	Average maintenance cost per lane•kilometer	80,000 \$/lane $\cdot \mathrm{km}$
z_{3}	Fixed setup time	$2 \mathrm{hr} / \mathrm{zone}$
z_{4}	Average maintenance time per lane-kilometer	$6 \mathrm{hr} /$ lane $\cdot \mathrm{km}$

To examine sensitivities to other factors, we fix the traffic flow rates Q_{1} and Q_{2} at 400 vehicles per hour (vph) each. Figure 3.5 shows increases in user cost as the zone length increases in Alternatives 2.1, 2.2, and 2.3. However, user cost decreases slightly as the zone length increases in Alternative 2.4 because no vehicle passes through the work zone and the longer zone decreases the moving delay per lane-kilometer.

Table 3.2 Optimized work zone lengths and Total Costs for Different Flow Rates

$Q_{1}+Q_{2}$	Q_{1}	Q_{2}	Alt.2.1		Alt. $2.2(\mathrm{p}=0.3)$		Alt. 2.2 ($\mathrm{p}=0.6$)		Alt. 2.2 ($\mathrm{p}=0.9$)		Alt. 2.3		Alt. 2.4	
			Optim. length	Min. total cost	Optim. length	$\begin{gathered} \text { Min. total } \\ \text { cost } \end{gathered}$	Optim. length	Min. total cost	Optim. length	Min. total cost	Optim. length	$\begin{gathered} \text { Min. total } \\ \text { cost } \end{gathered}$	Optim. length	Min. total cost
200	100	100	1.54	81,260	1.69	81,185	1.89	81,101	2.17	81,003	2.30	80,966	5.00	80,461
400	200	200	1.04	81,975	1.16	81,847	1.32	81,709	1.55	81,550	1.66	81,491	5.00	80,727
600	200	400	0.80	82,695	0.88	82,502	0.99	82,316	1.12	82,129	1.17	82,064	5.00	81,023
800	200	600	0.64	83,559	0.72	83,204	0.81	82,897	0.92	82,617	0.96	82,527	5.00	81,353
1000	200	800	0.48	85,162	0.58	84,245	0.67	83,596	0.79	83,085	0.83	82,933	5.00	81,723
1200	200	1000	-	-	0.34	88,747	0.51	85,172	0.68	83,659	0.74	83,302	5.00	82,136
600	400	200	0.80	82,693	0.95	82,442	1.16	82,194	1.53	81,908	1.73	81,792	5.00	80,992
800	400	400	0.61	83,846	0.73	83,303	0.89	82,888	1.12	82,512	1.22	82,383	5.00	81,277
1000	400	600	0.43	86,096	0.57	84,520	0.72	83,660	0.91	83,044	1.00	82,860	5.00	81,597
1200	400	800	-	-	0.37	87,872	0.57	84,886	0.78	83,595	0.86	83,277	5.00	81,957
1400	400	1000	-	-	-	-	0.28	92,322	0.65	84,444	0.77	83,657	5.00	82,359
800	600	200	0.64	83,556	0.81	83,048	1.05	82,673	1.51	82,275	1.80	82,106	5.00	81,268
1000	600	400	0.43	86,095	0.61	84,301	0.81	83,490	1.12	82,907	1.27	82,715	5.00	81,542
1200	600	600	-	-	0.42	86,921	0.64	84,549	0.91	83,487	1.04	83,206	5.00	81,852
1400	600	800	-	-	-	-	0.46	86,882	0.77	84,134	0.90	83,635	5.00	82,200
1600	600	1000	-	-	-	-	-	-	0.61	85,342	0.80	84,024	5.00	82,592
1000	800	200	0.49	85,159	0.70	83,736	0.97	83,154	1.49	82,652	1.87	82,433	5.00	81,558
1200	800	400	-!	-	0.49	85,866	0.74	84,146	1.11	83,315	1.32	83,061	5.00	81,821
1400	800	600	-	-	0.20	99,517	0.56	85,675	0.91	83,947	1.08	83,565	5.00	82,119
1600	800	800	-	-	-	-	0.32	91,391	0.76	84,704	0.94	84,006	5.00	82,456
1800	800	1000	-	-	-	-	-	-	0.57	86,401	0.84	84,406	5.00	82,836
1200	1000	200	-	-	0.60	84,658	0.90	83,649	1.48	83,041	1.95	82,777	5.00	81,865
1400	1000	400	-	-	0.33	90,098	0.68	84,891	1.11	83,737	1.38	83,423	5.00	82,115
1600	1000	600	-	-	-	-	0.48	87,296	0.91	84,426	1.12	83,942	5.00	82,400
1800	1000	800	-	-	-	-	-	-	0.75	85,311	0.97	84,394	5.00	82,725
2000	1000	1000	-	-	-	-	-	-	0.53	87,698	0.87	84,805	5.00	83,093

Table 3.3 compares the delay costs for different directional flows that add up to
1400 vph . For Alternative $2.2(p=0.6)$, although the combined flow is the same, the combinations with larger Q_{2} have shorter optimized zones and higher total costs. This occurs because the queue delay cost on the main road, C_{q}^{22}, which is the main part of the total delay costs, increases as Q_{2} increases.

Figure 3.5 User Costs versus Various Zone Lengths ($Q_{I}=400 \mathrm{vph}, Q_{2}=400 \mathrm{vph}$)

Table 3.3. Comparison of Delay Costs with Different Directional Flows for Alternative 2.2 ($p=\mathbf{0 . 6}$)

$\underset{(\mathrm{vph})}{Q_{1}+Q_{2}}$	$\underset{(\mathrm{vph})}{\text { Q1 }}$	$\underset{(\mathrm{vph})}{\text { Q2 }}$	Optimized Length (km)	Cost	$\begin{gathered} C_{T}^{22} \\ (\$ / \mathbf{k m}) \end{gathered}$	C_{M} (\$/km)	$C_{U}^{22} \quad(\$ / \mathbf{k m})$			
							C_{q}^{22}	$C_{v p}^{22}$	$C_{\text {v3 }}^{22}$	$C_{v(1-p) 2}^{22}$
1,400	400	1,000	0.28	Value	92,322	83,546	8,116	542	87	31
				$\begin{array}{\|c\|} \hline \text { Percent of } \\ \text { Cost } \end{array}$	100\%	90.49\%	8.79\%	0.59\%	0.09\%	0.03\%
1,400	1,000	400	0.68	Value	84,891	81,474	2,331	897	157	32
				Percent of Cost	100\%	95.97\%	2.75\%	1.10\%	0.19\%	0.04\%

As the zone length increases, the maintenance costs per kilometer decreases due to fewer setups, but stays the same for all alternatives. Combined with the user cost in Figure 3.5, the zone lengths that minimize total costs are determined by trade-offs between the user and maintenance cost, show in Figure 3.6. The optimized zone lengths for Alternatives 2.1, $2.2(p=0.3), 2.3$, and 2.4 are $0.61 \mathrm{~km}, 0.73 \mathrm{~km}, 1.22 \mathrm{~km}$, and 5.00 km , respectively. Faster increases in the user cost of Alternative 2.1 shorten its optimized zone.

Figure 3.6 Total Costs versus Various Work Zone Lengths ($Q_{I}=\mathbf{4 0 0 v p h}, Q_{2}=\mathbf{4 0 0 v p h}$)

Figures 3.7 and 3.8 show how setup cost z_{l} and average maintenance time z_{4} affect the optimized zone length. Figure 3.7 shows that the optimized zone length increases when the setup $\operatorname{cost} z_{l}$ increases for Alternatives 2.1, 2.2, and 2.3, because longer zones imply fewer setups and decreased total cost. In Alternative 2.4, total cost is minimized when zone length is 5 km , regardless of other variables. Then, the optimized zone length of Alternative 2.4 is entirely unaffected by setup cost. Figure 3.8 shows that the optimized zone length decreases when the average maintenance time increases, in order to avoid excessive increases in user delay. The optimized zone length of Alternative 2.4 is also entirely unaffected by average maintenance time. Additional sensitivity of the optimized zone length to setup duration, work zone speed, and other factors is provided in Chen and Schonfeld (2002).

Figure 3.7 Optimized Zone Length versus Setup Cost $z_{1}\left(Q_{1}=400 \mathrm{vph}, Q_{2}=400 \mathrm{vph}\right)$

Figure 3.8 Optimized Zone Length versus Average Maintenance Time \boldsymbol{z}_{4}

$$
\left(Q_{I}=400 \mathrm{vph}, Q_{2}=400 \mathrm{vph}\right)
$$

Figure 3.9 shows that the combined capacity of the maintained road and its detour increases as the diverted fraction increases. Here the capacity for Alternative 2.1 is 1200 vph. As the diverted fraction increases, the combined flow discharge increases. The combined capacity is about 1450 vph for Alternative $2.2(p=0.3)$ and about 1700 vph for Alternative $2.2(p=0.6)$. The capacity of the one lane through the zone in Alternative 2.1 can be also obtained by dividing one hour (3600 seconds) by the headway (3 seconds) through the zone. Starting from Alternative 2.1 as the baseline, the additional capacity in Alternatives 2.2 and 2.3 is contributed by the detour. Higher diverted fractions increase the capacity through the zone.

Figure 3.9 User Delay Costs versus Combined Flows

3.6.2 Selection Guidelines

Thresholds among alternatives with respect to four variables, namely, detour length $\left(L_{d}\right)$, length of main road between the beginning and end of detour $\left(L_{t}\right)$, setup cost $\left(z_{1}\right)$, and average maintenance time per kilometer $\left(z_{4}\right)$, are solved numerically and presented below.

Figure 3.10 shows the relation between total cost and detour length when Q_{1} and Q_{2} are each 200 vph . The detour length threshold is 9.00 km , beyond which Alternative 2.1 becomes preferable to Alternative 2.4.

Figure 3.11 shows that there are four detour length thresholds and Alternatives 2.1, 2.2,2.3, and 2.4 are on the lowest cost envelope when Q_{1} and Q_{2} are each 400 and 600 vph . The first threshold occurs at 10 km , beyond which Alternative 2.3 becomes preferable to Alternative 2.4; beyond 11 km Alternative $2.2(p=0.6)$ becomes preferable to Alternative 2.3; beyond 12 km Alternative $2.2(p=0.3)$ becomes preferable to Alternative $2.2(p=0.6)$; beyond 15 km Alternative 2.1 becomes preferable to Alternative $2.2(p=0.3)$. Figure 3.12 shows the relation between total cost and detour length when Q_{1} and Q_{2} are each 800 and 600 vph . There are three detour length thresholds, $9 \mathrm{~km}, 12 \mathrm{~km}$, and 14 km , and Alternatives 2.2 ($p=0.6$ and 0.9), Alternatives 2.3 and 2.4 are on the lowest cost envelope.

Figure 3.10 Total Cost versus Detour Length for Various Alternatives ($\boldsymbol{Q}_{I}=\mathbf{2 0 0 v p h}$, $\left.Q_{2}=200 \mathrm{vph}\right)$

Figure 3.11 Total Cost versus Detour Length for Various Alternatives ($\boldsymbol{Q}_{I}=\mathbf{4 0 0 v p h}$, $\left.Q_{2}=600 \mathrm{vph}\right)$

Figure 3.12 Total Cost versus Detour Length for Various Alternatives $\left(\boldsymbol{Q}_{I}=\mathbf{8 0 0} \mathbf{v p h}\right.$, $\left.Q_{2}=600 \mathrm{vph}\right)$

Defining circuity as the ratio of detour distance to maintained road distance $=L_{d} /$ L_{t}, the circuity thresholds are shown for various traffic flows in Table 3.4. The numbers in Table 3.4 represent the preferred pair of alternatives that determine the threshold. If combined flow does not exceed 1000 vph , Alternatives 2.1 and 2.4 determine most thresholds, as illustrated in Figure 3.10.

As combined flow increases, Alternatives 2.2 and 2.3 may determine thresholds and additional detour length thresholds appear. Thus, Alternatives 2.1, 2.2, 2.3, and 2.4 all appear on the lowest cost envelope in Figure 3.11. As combined flow increases, e.g. beyond 1400 vph , Alternative 2.2 (whose diverted fraction is lower) is not preferable anymore, e.g. in Figure 3.12.

Table 3.4 Circuity Threshold at Different Flow Rates

$Q_{1}+Q_{2}$	Q_{1}	Q_{2}	Circuity threshold									
			Alt. 2.1 \& Alt.2.4	$\begin{array}{\|c\|c} \hline \text { Alt.2.1 } \\ \& \\ \text { Alt.2.2 } \\ \text { (} \mathrm{p}=0.3 \text {) } \end{array}$	$\begin{array}{\|c} \hline \text { Alt.2.1 } \\ \& \\ \text { Alt.2.2 } \\ \text { (} \mathrm{p}=0.6) \end{array}$	$\begin{gathered} \hline \text { Alt.2.2 } \\ \text { (} \mathrm{p}=0.3 \text {) } \\ \text { \& } \\ \text { Alt.2.2 } \\ (\mathrm{p}=0.6) \\ \hline \end{gathered}$	$\begin{gathered} \text { Alt.2.2 } \\ (\mathrm{p}=0.3) \\ \& \\ \text { Alt.2.4 } \end{gathered}$	$\begin{gathered} \text { Alt.2.2 } \\ (\mathrm{p}=0.6) \\ \& \\ \text { Alt.2.2 } \\ (\mathrm{p}=0.9) \\ \hline \end{gathered}$	$\begin{gathered} \text { Alt.2.2 } \\ (\mathrm{p}=0.6) \\ \& \\ \text { Alt.2.3 } \end{gathered}$	$\begin{gathered} \text { Alt.2.2 } \\ (\mathrm{p}=0.6) \\ \& \\ \text { Alt.2.4 } \end{gathered}$	$\begin{gathered} \text { Alt.2.2 } \\ (\mathrm{p}=0.9) \\ \& \\ \text { Alt.2.3 } \end{gathered}$	$\begin{gathered} \text { Alt.2.3 } \\ \& \\ \text { Alt.2.4 } \end{gathered}$
200	100	100	2	-	-	-	-	-	-	-	-	-
400	200	200	1.8	-	-	-	-	-	-	-	-	-
600	200	400	1.8	-	-	-	-	-	-	-	-	-
600	400	200	1.8	-	-	-	-	-	-	-	-	-
800	200	600	-	-	2.2	-	-	-	2	-	-	1.6
800	400	400	-	2	-	-	1.8	-	-	-	-	-
800	600	200	1.8	-	-	-	-	-	-	-	-	-
1,000	200	800	-	3.4	-	3	-	2.8	-	-	2.6	1.6
1,000	400	600	-	3	-	2.4	-	-	2.2	-	-	1.8
1,000	600	400	-	2.6	-	-	2	-	-	-	-	-
1,000	800	200	-	2.2	-	-	1.8	-	-	-	-	-
1,200	200	1,000	-	-	-	-	-	-	-	-	5	1.6
1,200	400	800	-	-	-	-	-	3.4	-	-	3	1.6
1,200	600	600	-	-	-	3.6	-	-	2.4	-	-	1.8
1,200	800	400	-	-	-	2.6	-	-	-	1.8	-	-
1,200	1,000	200	-	-	-	-	2	-	-	-	-	-
1,400	400	1,000	-	-	-	-	-	-	-	-	-	1.6
1,400	600	800	-	-	-	-	-	5	-	-	3.4	1.6
1,400	800	600	-	-	-	-	-	2.8	-	-	2.4	1.8
1,400	1,000	400	-	-	-	-	-	-	-	2.2	-	-
1,600	600	1,000	-	-	-	-	-	-	-	-	-	1.6
1,600	800	800	-	-	-	-	-	-	-	-	3.8	1.8
1,600	1,000	600	-	-	-	-	-	3.6	-	-	2.4	2
1,800	800	1,000	-	-	-	-	-	-	-	-	-	1.6
1,800	1,000	800	-	-	-		-		-	-	4	1.8
2,000	1,000	1,000	-	-	-		-		-	-	-	1.6

The thresholds with respect to setup cost, z_{l}, average maintenance time per
kilometer, z_{4}, and other factors at different flow rates can be obtained similarly to circuity ratio thresholds.

3.6.3 Optimizing the Diverted Fraction

Figures 3.13 and 3.14 show the relation between total cost and the diverted fraction of Q_{1} at different flow rates for Alternatives 2.1, 2.2, and 2.3. (Alternative 2.4
with full diversion in both directions is not included). When the detour length L_{d} has its baseline value, 6 km , and Q_{2} is 400 vph , the total costs are lowest as p approaches 1.0, which indicates Alternative 2.3 is preferable for various Q_{l} flows, as illustrated in Figure 3.13. If the detour length L_{d} increases to 12 km , and Q_{2} is 400 vph , the minimized total cost occurs at $p=0$ (Alternative 2.1, no diversion) for Q_{1} of 200 and 400 vph ; and at the lowest points of $p, p=0.2,0.4$ for Q_{l} of 600 and 800 vph , respectively. These indicate that full diversion is preferable when the detours are short; some or no diversion becomes preferable as detour length increases. The results of Figures 3.13 and 3.13 also can be obtained analytically, by setting to zero the partial derivatives of C_{T} with respect to p and solving for the optimal p value.

Figure 3.13. Total Cost versus Diverted Fraction ($Q_{2}=\mathbf{4 0 0 v p h}, L_{d}=\mathbf{6 k m}$)

Figure 3.14 Total Cost versus Diverted Fraction $\left(Q_{2}=400 \mathrm{vph}, L_{d}=12 \mathrm{~km}\right)$

3.6.4 Summary

In this section work zone cost models are developed for four alternative zone configurations with and without an alternate route. The optimized zone length and preferred alternative for various combinations of variables are determined with these cost models. When the traffic flows in two directions are steady, Alternative 2.1 has a higher user cost and shorter zone than other alternatives while Alternative 2.4 has a lower user cost and longer zone. As Q_{1} or Q_{2} increase, the optimized zone length decreases for Alternatives 2.1 and 2.2. However, for Alternative 2.3, the optimized zone length increases slightly as Q_{1} increases, and decreases as Q_{2} increases. The optimized zone length of Alternative 2.4 is unaffected by any other variables

In the threshold analysis presented, Alternative 2.4 is the preferred alternative in the baseline condition. As detour length L_{d} increases beyond its threshold, Alternatives 2.1, 2.2 or 2.3 may become preferable. This occurs because increasing L_{d} increases the
user cost. Therefore, the preferred alternative changes when the total cost of Alternative 2.4 exceeds that of Alternatives 2.1, 2.2, or 2.3. Considering an optimized diverted fraction among Alternatives 2.1, 2.2, and 2.3, full diversion is preferable if the detour is short; partial or no division becomes preferable as detour length increases.

3.7 Numerical Analysis - Four-Lane Two-Way Highways

3.7.1 Sensitivity Analysis

The effects of various parameters on work zone length and the preferable alternatives are examined in this section. The baseline numerical values for each variable are the same as in Table 3.1. The baseline numerical values for additional variables in this section are defined in Table 3.5.

Table 3.5 Notation and Baseline Numerical Inputs Analysis for Four-Lane Two-Way Highway Work Zones

Variable	Description	Values
c_{o}	Maximum discharge rate without work zone Maximum discharge rate along work zone	$2,600 \mathrm{vph}$
c_{w}	$1,200 \mathrm{vph}$	
n_{a}	Number of crashes per 100 million vehicle hour Hourly flow rate in Direction 2	$40 \mathrm{acc} / 100 \mathrm{mvh}$
Q_{2}	Hourly flow rate in Direction 3	$500 \mathrm{veh} / \mathrm{hr}$
Q_{3}	Average work zone speed	$500 \mathrm{veh} / \mathrm{hr}$
V_{w}	Average crash cost	$142,000 \$ / \mathrm{hr} \mathrm{crash}$
v_{a}	Value of user time	$12 \$ / \mathrm{veh} \cdot \mathrm{hr}$

The optimized solutions for work zone length and total cost are shown in Table 3.6 for various traffic flows Q_{1}, from 100 vph to $2,600 \mathrm{vph}$. Note that the optimized length and minimized total cost are available even if the remaining Q_{l} on the main road exceeds the work zone capacity $1,200 \mathrm{vph}$. For Alternatives 4.1, 4.2 ($p=0.3$ and 0.6), and
4.4, as Q_{l} increases, the optimized zone length L^{*} decreases. Figure 3.15 shows that for Alternatives 4.1, $4.2(p=0.3)$, and $4.4, L^{*}$ decreases sharply as the remaining flow of Q_{l} in Direction 1 exceeds the work zone capacity, because a queue is then formed and a much shorter zone length L is needed to avoid higher queue delays. Q_{l} in Alternative $4.2(p=0.3)$ is higher when L^{*} decreases because 30% of Q_{l} has been diverted and the remaining flow is approaching the zone capacity. For Alternatives $4.2(p=0.9)$ and $4.3, L^{*}$ stays almost constant at 5 km because almost all of Q_{1} has been diverted, and the very slight remaining flow of Q_{1} on the main road has almost no effect on delays due to the work zone. Therefore, the optimized L^{*} is the entire distance from A to B because it has the lowest maintenance cost and total cost.

Figure 3.15 Optimized Zone Length vs. \boldsymbol{Q}_{I}

In Table 3.6, it is notable that alternative 4.4 ("cross-over") is never the least-cost alternative, for the baseline values given in Table 3.5. However, it is close enough to the
best alternative in some cases (within 0.5%) that its optimality cannot be ruled-out for all reasonable input parameters.

Table 3.6 Optimized work zone lengths (km) and Minimized Total Costs (\$/lane.km) for Various Flow Rates

Q_{1}	Alt.4.1		Alt.4.2 (p=0.3)		Alt.4.2 ($\mathrm{p}=0.6$)		Alt.4.2 ($\mathrm{p}=0.9$)		Alt.4.3		Alt.4.4	
	$\begin{array}{\|c\|} \hline \text { Optimized } \\ \text { length } \\ \hline \end{array}$	$\begin{gathered} \text { Min. total } \\ \text { cost } \end{gathered}$	$\begin{gathered} \text { Optimized } \\ \text { length } \\ \hline \end{gathered}$	Min. total cost	$\begin{array}{\|c} \hline \text { Optimized } \\ \text { length } \\ \hline \end{array}$	$\begin{gathered} \text { Min. total } \\ \text { cost } \end{gathered}$	$\begin{gathered} \text { Optimized } \\ \text { length } \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} \text { Min. total } \\ \text { cost } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Optimized } \\ \text { length } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Min. total } \\ \text { cost } \end{array}$	$\begin{array}{\|c\|} \hline \text { Optimized } \\ \text { length } \\ \hline \end{array}$	Min. total cost
100	4.32	80,481	5.00	80,439	5.00	80,392	5.00	80,346	5.00	80,331	1.76	81,242
200	3.07	80,687	3.71	80,648	4.97	80,582	5.00	80,493	5.00	80,465	1.64	81,343
300	2.52	80,846	3.06	80,818	4.13	80,758	5.00	80,642	5.00	80,601	1.54	81,436
400	2.20	80,980	2.68	80,968	3.63	80,921	5.00	80,791	5.00	80,741	1.46	81,522
500	1.98	81,098	2.43	81,103	3.31	81,073	5.00	80,942	5.00	80,883	1.40	81,602
600	1.82	81,203	2.24	81,227	3.07	81,218	5.00	81,094	5.00	81,029	1.34	81,677
700	1.69	81,299	2.10	81,343	2.89	81,357	5.00	81,247	5.00	81,179	1.29	81,747
800	1.59	81,386	1.99	81,451	2.75	81,491	5.00	81,402	5.00	81,333	1.25	81,813
900	1.51	81,467	1.90	81,552	2.64	81,620	5.00	81,559	5.00	81,490	1.21	81,874
1,000	1.45	81,541	1.82	81,647	2.54	81,746	5.00	81,717	5.00	81,652	1.18	81,932
1,100	1.39	81,610	1.76	81,736	2.47	81,867	5.00	81,876	5.00	81,819	1.15	81,985
1,200	1.34	81,674	1.70	81,819	2.40	81,984	5.00	82,038	5.00	81,991	1.13	82,035
1,300	0.39	114,198	1.65	81,896	2.35	82,097	5.00	82,201	5.00	82,169	0.39	114,476
1,400	0.36	150,510	1.61	81,967	2.30	82,206	5.00	82,367	5.00	82,352	0.36	150,921
1,500	0.35	193,334	1.58	82,033	2.27	82,311	4.97	82,534	5.00	82,543	0.35	193,914
1,600	0.34	244,690	1.55	82,092	2.23	82,411	4.94	82,704	5.00	82,740	0.34	245,483
1,700	0.34	307,441	1.52	82,145	2.21	82,506	4.92	82,877	5.00	82,946	0.34	308,501
1,800	0.34	385,866	0.44	101,978	2.19	82,597	4.91	83,052	5.00	83,161	0.34	387,270
1,900	0.34	486,686	0.38	125,530	2.17	82,681	4.91	83,231	5.00	83,385	0.34	488,541
2,000	0.34	621,103	0.36	151,665	2.16	82,760	4.92	83,413	5.00	83,621	0.34	623,570
2,100	0.34	809,276	0.36	180,984	2.15	82,832	4.94	83,598	5.00	83,869	0.34	812,611
2,200	0.34	1,091,527	0.35	214,147	2.14	82,896	4.98	83,788	5.00	84,132	0.34	1,096,177
2,300	0.33	1,561,935	0.35	251,981	2.14	82,953	5.00	83,981	5.00	84,411	0.33	1,568,791
2,400	0.33	2,502,739	0.34	295,559	2.15	82,999	5.00	84,180	5.00	84,710	0.33	2,514,032
2,500	0.33	5,325,141	0.34	346,303	2.15	83,036	5.00	84,385	5.00	85,031	0.33	5,349,777
2,600	-	-	0.34	406,147	-	-	5.00	84,596	5.00	85,380	-	-

To examine sensitivities to other factors, we fix the traffic flow rates Q_{1} at 1,000
vehicles per hour (vph). Figure 3.16 shows increases in user cost as L increases in
Alternatives 4.1 and 4.4 because they have only one lane for discharging flow and no
detours. A longer L only increases user delay costs. Alternatives 4.2 ($p=0.3,0.6$, and 0.9) have their lowest user costs for zone lengths of $0.6 \mathrm{~km}, 1.0 \mathrm{~km}$, and 2.5 km , respectively, since lower remaining flows on the maintained road justify longer L^{*} values. Alternative 4.3 has the lowest user delay cost and maximum L at 5 km since all of Q_{l} has been
diverted; the only moving delay occurs along the detour and it decreases due to reduced maintenance time per kilometer. Thus, a longer L shortens the maintenance time per kilometer and decreases user delay costs.

As L increases, the maintenance costs per kilometer decreases due to fewer setups but stays the same for all alternatives. Combined with the user cost in Figure 3.16 and crash costs for four alternatives, the zone lengths that minimize total costs are determined by trade-offs among the maintenance, user, and crash costs. If we fix the traffic flow rates Q_{I} at $1,000 \mathrm{vph}, L^{*}$ is 1.45 km for Alternative 4.1, 1.82 km for Alternative $4.2(p=0.3)$, 5.00 km for Alternative 4.3 , and 1.18 km for Alternative 4.4, shown in Table 3.6 and Figure 3.17. Faster increases in the user cost of Alternative 4.4 shorten its L^{*}.

Figure 3.16 User Delay Cost vs. Work Zone Length ($Q_{1}=\mathbf{1 , 0 0 0} \mathrm{vph}, Q_{2}=500 \mathrm{vph}, Q_{3}=500 \mathrm{vph}$)
Figures 3.18 shows the relations between L^{*} and setup cost z_{1}. Thus, L^{*} increases when z_{l} increases in Alternatives 4.1, 4.2 ($p=0.3$ and 0.6), and 4.4, because longer zones imply fewer setups and decreased total cost. In this case, the L^{*} of Alternatives 4.2 $(p=0.9)$ and 4.3 are not sensitive to setup cost because L^{*} cannot exceed the full distance
of the maintained road from A to B (5 km in this example) even though most theoretical L^{*} values for Alternative $4.2(p=0.9)$ exceed 5 km . In Alternative 4.3, total cost is minimized when $L=5 \mathrm{~km}$, regardless of other variables. Then, L^{*} of Alternative 4.3 is entirely unaffected by setup cost.

Figure 3.17 Total Cost vs. Work Zone Length ($\left.Q_{I}=1,000 \mathrm{vph}, Q_{2}=500 \mathrm{vph}, Q_{3}=500 \mathrm{vph}\right)$

Figure 3.18 Optimized Work Zone Length vs. Setup Cost ($\left.Q_{I}=1,000 \mathrm{vph}, Q_{2}=500 \mathrm{vph}, Q_{3}=500 \mathrm{vph}\right)$

Additional analysis of the sensitivity of L^{*} to setup duration, z_{3}, and average maintenance time, z_{4}, etc. is provided in Chen and Schonfeld (2001).

3.7.2 Selection Guidelines

Thresholds among alternatives with respect to several key variables, namely, traffic flow $\left(Q_{l}\right)$, detour length $\left(L_{d}\right)$, length of main road between the beginning and end of detour $\left(L_{t}\right)$, setup cost $\left(z_{1}\right)$, and average maintenance time per kilometer $\left(z_{4}\right)$, etc. are solved numerically and presented below.

Figure 3.19 shows the relation between minimized total cost and Q_{1}. There are three flow thresholds and Alternatives 4.1, 4.2, 4.3 successively define the lowest cost envelope. The first threshold occurs at 800 vph , beyond which Alternative 4.1 becomes preferable to Alternative 4.3; beyond $1,200 \mathrm{vph}$ Alternative $4.2(p=0.3)$ becomes preferable to Alternative 4.1; beyond 1700 vph more diversion is preferable, such as Alternative $4.2(p=0.6)$. This result can also be obtained from Table 3.6. The sharp increase occurs as Q_{1} exceeds 1,200 vph in Alternative 4.1 and 1,700 vph in Alternative $4.2(p=0.3)$ since the flow in Direction 1 exceeds work zone capacity and queue delays develop.

Figure 3.19 Minimized Total Cost vs. Q_{1}

Figure 3.20 shows the relation between minimized total cost and detour length in three cases: $Q_{I}=1,000 \mathrm{vph}, 1,500 \mathrm{vph}$, and $2,000 \mathrm{vph}$. There is no detour threshold in Figure 3.20; however, when Q_{l} exceeds the maximum discharge rate along the work zone c_{w}, more diverted flow is preferable. The total costs in Alternatives 4.1 and 4.4, which have no detours, become quite high, as shown in Figures 3.20(b) and 3.20(c), as Q_{1} exceeds c_{w} because queue delays develop and user delay costs increase sharply. Alternative 4.1 is preferable for $Q_{I}=1,000 \mathrm{vph}$, Alternative $4.2(p=0.3)$ is preferable for $Q_{I}=1,500 \mathrm{vph}$ and Alternative $4.2(p=0.6)$ is preferable for $Q_{I}=2,000 \mathrm{vph}$. Figure 3.20 shows that detour length affects the relative costs but not the rankings of alternatives.

The thresholds with respect to other main variables, such as setup cost z_{l}, average maintenance time per kilometer, z_{4}, length of main road between the beginning and end of detour, L_{t}, etc. can be obtained similarly to traffic flow or setup cost thresholds.

(b)

Detour Length (km)

(c)

Detour Length (km)

Figure 3.20 Minimized Total Cost vs. Detour Length (a) $Q_{I}=1,000 \mathrm{vph}(\mathrm{b}) Q_{l}=\mathbf{1 , 5 0 0} \mathrm{vph}(\mathrm{c})$ $Q_{I}=\mathbf{2 , 0 0 0} \mathbf{~ v p h}$

3.7.3 Optimizing the Diverted Fraction

Figure 3.21 shows the relation between total cost and diverted fraction for different flow rates. When the flow Q_{I} does not exceed maximum discharge rate along the work zone $(1,200 \mathrm{vph})$ the total cost is lowest at boundary points of $p, p=0$ and 1.0 . If Q_{1} is between 0 and 800 vph , the minimized total cost occurs at $p=1$ (Alternative 4.3, diverted all Q_{I} to detour); if Q_{I} is between 800 vph and $1,200 \mathrm{vph}$, the minimized total cost occurs at $p=0$ (Alternative 4.1, no diversion). If the flow Q_{l} exceeds the maximum discharge rate along the work zone (1,200 vph), the minimized total costs occur at the lowest points of $p, p=0.2,0.4$, and 0.6 when flows Q_{l} are $1,500,2,000$, and $2,500 \mathrm{vph}$, respectively. Note that $15,00 *(1-0.2)=1,200$ and $2,000 *(1-0.4)=1,200$, which indicate that total cost is minimized if any vehicles beyond $1,200 \mathrm{vph}$ from Q_{1} are detoured.

Figure 3.21 Total Cost vs. Diverted Fraction (Detour Length = 6km)

3.7.4 Summary

In this section work zone cost models are developed for four alternative zone configurations on four-lane roads, with and without an alternate route. The optimized zone length and preferred alternative are determined for various combinations of variables.

In the threshold analysis presented, traffic flow Q_{1} and setup cost z_{1} affect the rankings of alternatives. For example, in the flow threshold case, beyond the first threshold of 800 vph , Alternative 4.1 becomes preferable to Alternative 4.3; beyond the second threshold of $1,200 \mathrm{vph}$, Alternative $4.2(p=0.3)$ becomes preferable to Alternative 4.1; beyond the third threshold of 1700 vph , Alternative $4.2(p=0.6)$ becomes preferable to Alternative $4.2(p=0.3)$. Alternative 4.4 might be selected only if an alternate road is unavailable and Q_{2} is relatively low.

Chapter IV Work Zone Optimization for Time-Dependent Inflows

According to the previously developed steady-flow models (Sections 3.3 and 3.4), optimized work zone length is quite sensitive to traffic volume. A zone length and its related work duration optimized for one traffic level may be quite sub-optimal if traffic volumes change significantly before the work is completed. Therefore, a different methodology is needed to optimize the total cost under time-dependent inflows.

Chien et al. (2002) developed a model to optimize the scheduling of work zone activities associated with traffic control for two-lane two-way highways where one lane at a time is closed. However, their inflows are overly simplified and the "greedy" search approach used to determine each zone length tends to produce sub-optimal results. Jiang and Adeli (2003) used neural networks and simulated annealing to optimize only one work zone length and starting time for a four-lane freeway, considering factors such as darkness and numbers of lanes closed; however, a multiple-zone project were not considered. Complete scheduling plans for multiple-zone maintenance projects can be optimized with the method presented in this chapter. A methodology is developed here to optimize an entire work zone project under time-dependent inflows.

Efficient scheduling and traffic control through work zones may significantly reduce the total cost, including agency cost and user cost. Based on time-dependent inflows, the issues considered in this chapter include:

1. What is the best starting time for the project?
2. Into how many zones should the project be divided?
3. What are the best starting times for each zone?
4. What should be the length for each zone?
5. What should be the work duration for each zone?
6. Should the ending time of one work zone be the starting time of next work zone or should there be a work pause between some successive zones, based on the trade-offs among maintenance costs, user costs and idling costs?

One work zone plan example for time-dependent inflows is illustrated in Figure
4.1.

Figure 4.1 Work Zone Activities under Time-Dependent Inflows

A model for optimizing work plans, including zone lengths, work durations, starting times, pausing times (if any), and control cycle times (if two-lane highways) is presented in this chapter. This is done by minimizing total cost, including agency cost (maintenance cost and idling cost) and user cost (user delay cost and crash cost), while taking into account traffic demand variations over time. Two optimization methods, Powell's (Press et al., 1988) and Simulated Annealing (Kirkpatrick et al., 1983), are adapted for this problem and compared. In this chapter, work zone are optimized for

Alternative 2.1 (two-lane highways) and Alternative 4.1 (four-lane highways). Finally, the reliability of the Simulated Annealing algorithm is presented.

4.1 Work Zone Cost Function for Time-Dependent Inflows

4.1.1 Model Formulation - Two-Lane Two-Way Highways (Alternative 2.1)

Schonfeld and Chien (1999) developed a work zone cost function which includes user delay and maintenance cost for two-lane highways. Using deterministic queuing analysis for control cycles that alternate traffic directions past work zones, the queuing delays per cycle (each cycle having two phases, one for each direction of travel) incurred in the work zone are derived as follows:

$$
\begin{align*}
& Y_{1}=\frac{1}{2} Q_{1}\left(r+t_{2}\right)\left(t_{1}+t_{2}\right) \tag{4.1}\\
& Y_{2}=\frac{1}{2} Q_{2}\left(r+t_{1}\right)\left(t_{1}+t_{2}\right) \tag{4.2}\\
& t_{1}=\frac{r\left(\frac{3600}{H}+Q_{1}-Q_{2}\right)}{\left(\frac{3600}{H}-Q_{1}-Q_{2}\right)} \tag{4.3}\\
& t_{2}=\frac{r\left(\frac{3600}{H}+Q_{2}-Q_{1}\right)}{\left(\frac{3600}{H}-Q_{1}-Q_{2}\right)} \tag{4.4}
\end{align*}
$$

Y_{1} is delay per cycle in Direction 1 and Y_{2} is delay per cycle in Direction 2. Note that t_{1} is the discharge phase for servicing the traffic flow Q_{1} in Direction 1 , while t_{2} is the discharge phase for servicing Direction 2. The average clearance time r is the work zone length L divided by the average vehicle moving speed V. Then:

$$
\begin{align*}
& Y_{1}=\frac{2 \times 3600 \times Q_{1} L^{2}\left(\frac{3600}{H}-Q_{1}\right)}{H V^{2}\left(\frac{3600}{H}-Q_{1}-Q_{2}\right)^{2}} \tag{4.5}\\
& Y_{2}=\frac{2 \times 3600 \times Q_{2} L^{2}\left(\frac{3600}{H}-Q_{2}\right)}{H V^{2}\left(\frac{3600}{H}-Q_{1}-Q_{2}\right)^{2}} \tag{4.6}
\end{align*}
$$

Consider work zone i of length L_{i}, which is one of the zones on a maintained road. The number of cycles N_{i} for zone i is the maintenance duration for zone i divided by the cycle time. N_{i} can be obtained as:

$$
\begin{equation*}
N_{i}=\frac{D_{i}}{t_{1}^{i}+t_{2}^{i}} \tag{4.7}
\end{equation*}
$$

In Eq.(4.7), t_{l}^{i} is the duration of the discharge phase in Direction 1 for work zone i, while t_{2}^{i} is the duration of the discharge phase in Direction 2 for zone $i . D_{i}$ is the total maintenance duration for zone i, which is linear according to the assumption in Eq (3.3):

$$
\begin{equation*}
D_{i}=z_{3}+z_{4} L_{i} \tag{4.8}
\end{equation*}
$$

The total queuing delay cost for work zone i is

$$
\begin{equation*}
C_{q i}=Y N_{i} v=\left(Y_{1}+Y_{2}\right) \frac{D_{i}}{t_{l}^{i}+t_{2}^{i}} v \tag{4.9}
\end{equation*}
$$

where Y is total delay per cycle. Substituting Eqs.(4.1), (4.2), (4.3), (4.4) (4.8) into Eq.(4.9), we obtain:

$$
\begin{equation*}
C_{q i}=\frac{\left(z_{3}+z_{4} L_{i}\right) L_{i}\left[Q_{1}\left(\frac{3600}{H}-Q_{1}\right)+Q_{2}\left(\frac{3600}{H}-Q_{2}\right)\right] v}{V\left(\frac{3600}{H}-Q_{1}-Q_{2}\right)} \tag{4.10}
\end{equation*}
$$

The maintenance cost for work zone $i, C_{m i}$, is according to the assumption in Eq (3.4):

$$
\begin{equation*}
C_{m i}=z_{1}+z_{2} L_{i} \tag{4.11}
\end{equation*}
$$

Then, the total cost for work zone $i, C_{t i}$, is

$$
\begin{equation*}
C_{t i}=C_{m i}+C_{q i}=z_{1}+z_{2} L_{i}+\frac{\left(z_{3}+z_{4} L_{i}\right) L_{i}\left[Q_{1}\left(\frac{3600}{H}-Q_{1}\right)+Q_{2}\left(\frac{3600}{H}-Q_{2}\right)\right] v}{V\left(\frac{3600}{H}-Q_{1}-Q_{2}\right)} \tag{4.12}
\end{equation*}
$$

where $C_{t i}=$ total cost for work zone $i ; C_{m i}=$ maintenance cost for work zone $i ; C_{q i}=$ user queuing delay cost for zone i.

We consider the varying traffic flows in Directions 1 and 2 over one day. A maintenance project for a two-lane two-way road with total length L_{T} in one direction would be maintained by scheduling m work zones over the entire maintenance period. Assume that zone $i(i=1,2, \ldots, m)$ is resurfaced over n duration units (different zones would likely have different n values) and $D_{i j}(j=1,2, \ldots, n)$ is a duration unit selected so that in it inflows stay appropriately constant, as shown in Figure 4.2. Then the duration for zone i, denoted D_{i}, is:

$$
\begin{equation*}
D_{i}=\sum_{j=l}^{n} D_{i j} \tag{4.13}
\end{equation*}
$$

Figure 4.2 Duration for Work Zone \boldsymbol{i} with Time-dependent Traffic Inflows

Here we assume that $D_{i j}$ is a short duration unit for work zone activities that cannot be further subdivided, such as 0.06 hr . (Because the zone length unit is assumed to be 0.01 km in this study, duration unit $=$ length unit $* z_{4}=0.01 \mathrm{~km} * 6 \mathrm{hr} /$ lane. $\mathrm{km}=0.06$ hr.) $Q_{1}^{i j}$ and $Q_{2}^{i j}$ represent the varying traffic flows in Directions 1 and 2 during the period j for zone i. The number of cycles $N_{i j}$ per traffic flow period is the duration of that period $D_{i j}$ divided by the cycle time $\left(t_{l}^{i j}+t_{2}^{i j}\right) . N_{i j}$ can be obtained as:

$$
\begin{equation*}
N_{i j}=\frac{D_{i j}}{t_{l}^{i j}+t_{2}^{i j}} \tag{4.14}
\end{equation*}
$$

where $t_{1}^{i j}$ and $t_{2}^{i j}$ are the discharge phases for traffic flows $Q_{1}^{i j}$ in Direction 1 and $Q_{2}^{i j}$ in Direction 2, respectively.

Then the user queuing delay cost for zone i can be formulated as:

$$
\begin{align*}
C_{q i} & =\sum_{j}^{n} Y^{i j} N_{i j} v \tag{4.15}\\
C_{q i} & =\sum_{j}^{n}\left(Y_{I}^{i j}+Y_{2}^{i j}\right) N_{i j} v \\
& =\sum_{j}^{n}\left[\frac{2 \times 3600 \times Q_{1}^{i j} L_{i}^{2}\left(\frac{3600}{H}-Q_{1}^{i j}\right)}{H V^{2}\left(\frac{3600}{H}-Q_{1}^{i j}-Q_{2}^{i j}\right)^{2}}+\frac{2 \times 3600 \times Q_{2}^{i j} L_{i}^{2}\left(\frac{3600}{H}-Q_{2}^{i j}\right)}{H V^{2}\left(\frac{3600}{H}-Q_{1}^{i j}-Q_{2}^{i j}\right)^{2}}\right] \frac{D_{i j}}{t_{1}^{i j}+t_{2}^{i j}} v \tag{4.16}
\end{align*}
$$

$$
\begin{equation*}
\text { where } t_{1}^{i j}=\frac{r_{i}\left(\frac{3600}{H}+Q_{1}^{i j}-Q_{2}^{i j}\right)}{\left(\frac{3600}{H}-Q_{1}^{i j}-Q_{2}^{i j}\right)} \tag{4.17}
\end{equation*}
$$

$$
\begin{equation*}
t_{2}^{i j}=\frac{r_{i}\left(\frac{3600}{H}+Q_{2}^{i j}-Q_{1}^{i j}\right)}{\left(\frac{3600}{H}-Q_{1}^{i j}-Q_{2}^{i j}\right)} \tag{4.18}
\end{equation*}
$$

$$
\begin{equation*}
r_{i}=\frac{L_{i}}{V} \tag{4.19}
\end{equation*}
$$

Eqs.(4.17) and (4.18) indicate that the one-way traffic control is time-dependent. The phases in Directions 1 and 2 are determined with the time-dependent flows $Q_{1}^{i j}$ and $Q_{2}^{i j}$.

Substituting Eqs.(4.17), (4.18), (4.19) into Eq.(4.16), we obtain:

$$
\begin{equation*}
C_{q i}=\sum_{j}^{n} \frac{\left[Q_{1}^{i j}\left(\frac{3600}{H}-Q_{1}^{i j}\right)+Q_{2}^{i j}\left(\frac{3600}{H}-Q_{2}^{i j}\right)\right] v}{V\left(\frac{3600}{H}-Q_{1}^{i j}-Q_{2}^{i j}\right)} D_{i j} L_{i} \tag{4.20}
\end{equation*}
$$

The moving delay cost of the traffic flows Q_{1} and Q_{2} in work zone i, denoted $C_{v i}$, is the cost increment due to the zone. The moving delay for zone i in each period $D_{i j}$ of work zone duration D_{i} is equal to the flow $\left(Q_{1}+Q_{2}\right)$ multiplied by: (1) the period, $D_{i j}$, (2) the travel time difference over the zone length L_{i} with the work zone, $\frac{L_{i}}{V}$, and without the work zone, $\frac{L_{i}}{V_{0}}$, and (3) the value of time, v. Thus:

$$
\begin{equation*}
C_{v i}=\sum_{j}^{n}\left(Q_{t}^{i j}+Q_{2}^{i j}\right) D_{i j}\left(\frac{L_{i}}{V}-\frac{L_{i}}{V_{0}}\right) v \tag{4.21}
\end{equation*}
$$

Idling cost is also considered in work zone activities with time-dependent inflows. This idling cost is equal to idling time multiplied by the average cost of idling time for crews and equipment. Idling time is a pause between two successive work zones, denoted $\Delta t_{i}=\left(t_{s, i}-t_{e, i-1}\right)$. The idling cost per zone $C_{I i}$ is:

$$
\begin{equation*}
C_{I i}=v_{d} \Delta t_{i} \tag{4.22}
\end{equation*}
$$

where v_{d} is average cost of idling time, $t_{s, i}$ is the starting time for zone i, and $t_{e, i-1}$ is the ending time for zone $i-1$. Note that Δt_{i} is 0 for $i=1$.

The crash cost incurred by the traffic passing the work zone can be determined from the number of crashes per 100 million vehicle hours n_{a} multiplied by the product of the increasing delay $\left(C_{q i} / v+C_{v i} / v\right)$ and the average cost per crash v_{a} (Chien and Schonfeld, 2001), where $C_{q i} / v$ is the queuing delay and $C_{v i} / v$ is the moving delay for work zone i. The crash cost per work zone $C_{a i}$ is formulated as:

$$
\begin{equation*}
C_{a i}=\frac{\left(C_{q i}+C_{v i}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{4.23}
\end{equation*}
$$

The total cost for work zone $i, C_{t i}$, is

$$
\begin{equation*}
C_{t i}=\left(z_{1}+z_{2} L_{i}\right)+C_{q i}+C_{v i}+v_{d} \Delta t_{i}+\frac{\left(C_{q i}+C_{v i}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{4.24}
\end{equation*}
$$

The total cost of the maintenance project for resurfacing road length L_{T} by scheduling m work zones, $C_{P T}$ ($\$ /$ project), is expressed as:

$$
\begin{align*}
C_{P T} & =\sum_{i}^{m} C_{t i} \\
& =\sum_{i}^{m}\left(z_{l}+z_{2} L_{i}\right)+\sum_{i}^{m} C_{q i}+\sum_{i}^{m} C_{v i}+\sum_{i}^{m} v_{d} \Delta t_{i}+\sum_{i}^{m} \frac{\left(C_{q i}+C_{v i}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{4.25}
\end{align*}
$$

The objective function is:

$$
\begin{equation*}
\operatorname{Min} C_{P T}=\operatorname{Min} \sum_{i}^{m} C_{t i} \tag{4.26}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{i}^{m} L_{i}=L_{T} \tag{4.27}
\end{equation*}
$$

The total cost in Eq.(4.25) will be minimized with Powell's method as well as with the Simulated Annealing algorithm proposed in Section 4.2. Numerical analyses for two-lane highway work zones are presented in Section 4.3.

4.1.2 Model Formulation - Four-Lane Two-Way Highways (Alternative 4.1)

Chien and Schonfeld (2001) developed a work zone cost function, which includes the user delay, the crash, and the agency costs, for four-lane two-way highway without considering a detour (Figure 3.2(a)). The user delay cost consists of the queuing delay costs upstream of work zones and the moving delay costs through work zones. The equations of queuing delay and moving delay costs are shown in Section 3.4.2.

Consider the varying traffic flows in Directions 1 and 2 over one day. A maintenance project for a four-lane two-way road with total length L_{T} in one direction would be maintained by scheduling m work zones over the entire maintenance period. Assume that zone $i(i=1,2, \ldots ., m)$ is resurfaced over n duration units (different zones would likely have different n values) and $D_{i j}(j=1,2, \ldots, n)$ is a duration unit selected so that in it inflows stay appropriately constant, as shown in Figure 4.2.

Here we consider work zone i of length L, which is one of the zones along the total length L_{T} of a maintained road. Eq.(3.27), which estimates queuing delay cost for steady traffic inflows, cannot be applied directly for time-dependent inflows because it considers only one work zone, whose resulting queue might be dissipated after the zone is completed. In a multiple-zone project under time-dependent inflows, a new zone may begin immediately after the previous zone is completed; however, the queue is unlikely to be dissipated completely before next zone is started. In such a case, queuing delay costs for four-lane highway work zone are computed numerically. Queuing delay costs are illustrated here.

If flow $Q_{1}^{i j}$ does not exceed c_{w}, the queuing delay is zero. Figure 4.3 shows the dissipation of queue length along zone duration if flow $Q_{l}^{i j}$ exceeds c_{w}. Assume the
queue due to work zone $i-l$ has not been dissipated completely before zone i begins in Figure 4.3 and there exists queue length q_{i-l} as the zone i starts. The maximum queue length for zone i (area of A plus q_{i-1}) is:

$$
\begin{equation*}
q_{i, \max }=q_{i-1}+\left(Q_{l}^{i I}-c_{w}\right) D_{i l}+\left(Q_{l}^{i 2}-c_{w}\right) D_{i 2}+\ldots \ldots \ldots\left(Q_{l}^{i, j-I}-c_{w}\right) D_{i, j-1} \tag{4.28}
\end{equation*}
$$

The area of A plus q_{i-1} is equal to the area of B , the number of dissipated vehicles. Figure 4.3 indicates that queue is dissipated completely before the next zone begins so that the work zone i is completed at $t_{e, i}$ while there is still a remaining dissipation time $t_{r d, i}$ for its zone. Then the queuing delay for work zone i is the area of C . The queuing delay cost for zone i is:

$$
\begin{equation*}
C_{q i}=(\text { area of } C) v \tag{4.29}
\end{equation*}
$$

Figure 4.3 Queuing Delay and Queue Dissipation for Four-Lane Highway Work Zone

The moving delay cost of the traffic flows Q_{l} in work zone i, denoted $C_{v i}$, is the cost increment due to the zone. It is the moving delay $t_{m}^{i j}$ multiplied by the average delay cost v :

$$
\begin{equation*}
C_{v i}=\sum_{j=1}^{n} t_{m}^{i j} v \tag{4.30}
\end{equation*}
$$

where $t_{m}^{i j}=$ moving delay incurred by the approaching traffic flow $Q_{1}^{i j}$ for zone i in each period $D_{i j}$ of work zone duration $D_{i} . t_{m}^{i j}$ is a function of the difference between the travel time on a road with and without a work zone:

$$
\begin{array}{ll}
t_{m}^{i j}=\left(\frac{L_{i}}{V_{w}}-\frac{L_{i}}{V_{a}}\right) Q_{l}^{i j} D_{i j} & \text { when } Q_{l}^{i j} \leq c_{w} \\
t_{m}^{i j}=\left(\frac{L_{i}}{V_{w}}-\frac{L_{i}}{V_{a}}\right) c_{w} D_{i j} & \text { when } Q_{l}^{i j}>c_{w} \tag{4.31b}
\end{array}
$$

where $V_{a}=$ average approaching speed; $V_{w}=$ average work zone speed. If $Q_{i}^{i j}$ is greater than c_{w}, the variable $Q_{l}^{i j}$ is reduced by c_{w} (the maximum flow allowed to pass through the work zone).

Idling cost and crash cost have the same formulations as the Equations (4.22) and (4.23). The idling cost per zone $C_{I i}$ is:

$$
\begin{equation*}
C_{I i}=v_{d} \Delta t_{i} \tag{4.22}
\end{equation*}
$$

The crash cost per work zone $C_{a i}$ is formulated as:

$$
\begin{equation*}
C_{a i}=\frac{\left(C_{q i}+C_{v i}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{4.23}
\end{equation*}
$$

The maintenance cost for work zone $i, C_{m i}$, is according to assumption in Eq (3.4):

$$
\begin{equation*}
C_{m i}=z_{1}+z_{2} L_{i} \tag{4.11}
\end{equation*}
$$

The total cost for work zone $i, C_{t i}$, is:

$$
\begin{equation*}
C_{t i}=\left(z_{1}+z_{2} L_{i}\right)+C_{q i}+C_{v i}+v_{d} \Delta t_{i}+\frac{\left(C_{q i}+C_{v i}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{4.32}
\end{equation*}
$$

The total cost for resurfacing road length L_{T} by scheduling m work zones, $C_{P T}$ (\$/project), is expressed as:

$$
\begin{align*}
C_{P T} & =\sum_{i}^{m} C_{t i} \tag{4.33}\\
& =\sum_{i}^{m}\left(z_{1}+z_{2} L_{i}\right)+\sum_{i}^{m} C_{q i}+\sum_{i}^{m} C_{v i}+\sum_{i}^{m} v_{d} \Delta t_{i}+\sum_{i}^{m} \frac{\left(C_{q i}+C_{v i}\right)}{v} \frac{n_{a} v_{a}}{10^{8}}
\end{align*}
$$

The objective function is:

$$
\begin{equation*}
\operatorname{Min} C_{P T}=\operatorname{Min} \sum_{i}^{m} C_{t i} \tag{4.26}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{i}^{m} L_{i}=L_{T} \tag{4.27}
\end{equation*}
$$

The total cost in Eq.(4.33) will be minimized with Powell's method and with the Simulated Annealing algorithm proposed in Section 4.2. Numerical analyses for four-lane highway work zones are presented in Section 4.4.

4.2 Optimization Methods

A good optimization method should usually reach a good solution quickly, without excessive memory requirements. Two optimization methods that were deemed suitable for this problem are adapted and compared here. One is a classic direction-set method, called Powell's Method (Press et al., 1988), and the other is a heuristic Simulated Annealing algorithm (Press et al., 1988, Kirkpatrick et al., 1983). The optimized variables of the total cost function include the work zones lengths L_{i} and starting times $t_{s, i}$ required to complete the project. The zone ending times $t_{e, i}$, the duration of maintenance pauses between two work zones Δt_{i}, and the time-dependent cycle lengths for discharging directional traffic over different time periods (if two-lane highways) can be uniquely determined from the optimized variables L_{i} and $t_{s, i}$.

4.2.1 Powell's Method

This method may be applied when derivatives of the objective function are difficult or impossible to specify. The basic concept of Powell's Method is as follows (Press et al., 1988): Take the unit vectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots \boldsymbol{e}_{N}$ as a set of directions. Using onedimensional optimization, move along the first direction to the cost function's minimum, then from there along the second direction to its minimum, and so on, cycling through the whole set of directions as many times as necessary, until the function stops decreasing. The steps of Powell's Method are as follows:

Step 0: Initialize the set of directions $\boldsymbol{u}_{\boldsymbol{i}}$ to basic vectors,

$$
\boldsymbol{u}_{\boldsymbol{i}}=\boldsymbol{e}_{i} \quad i=1, \ldots \ldots, N
$$

Repeat the following sequence of steps until cost function stops decreasing.

Step 1: Save the starting position as $\boldsymbol{P}_{\boldsymbol{0}}$.
Step 2: For $i=1, \ldots, N$, move \boldsymbol{P}_{i-1} to the minimum along direction $\boldsymbol{u}_{\boldsymbol{i}}$ and call this point $\boldsymbol{P}_{\boldsymbol{i}}$.

Step 3: For $i=1, \ldots, N-1$, set $\boldsymbol{u}_{\boldsymbol{i}} \leftarrow \boldsymbol{u}_{\boldsymbol{i}+1}$.
Step 4: Set $\boldsymbol{u}_{\boldsymbol{N}} \leftarrow \boldsymbol{P}_{\boldsymbol{N}}-\boldsymbol{P}_{\boldsymbol{0}}$.
Step 5: Move $\boldsymbol{P}_{\boldsymbol{N}}$ to the minimum along direction $\boldsymbol{u}_{\boldsymbol{N}}$ and call this point $\boldsymbol{P}_{\boldsymbol{0}}$

In this study, work zone lengths and starting times are defined as vectors $\boldsymbol{e}_{\boldsymbol{i}}$ because other variables, e.g. zone durations, ending times, can be derived from the relation between zone length and duration, shown in Assumption 3. The solution $\boldsymbol{P}_{\boldsymbol{i}}$ is equal to $\left(L_{1}, L_{2}, . ., L_{i}, \ldots, L_{m}, t_{s, 1}, t_{s, 2}, \ldots, t_{s, i}, \ldots, t_{s, m}\right)$, where m is the number of work zones. The sequence of directions for each successive iteration (step 1 to step 5) in searching for the minimized total cost is as follows: $\left(L_{l}\right) \rightarrow\left(L_{2}, t_{s, 2}\right) \rightarrow \ldots \rightarrow\left(L_{i}, t_{s, i}\right) \rightarrow \ldots \rightarrow\left(L_{m}\right.$, $\left.t_{s, m}\right)$. $\left(L_{i}, t_{s, i}\right)$ indicates that zone length L_{i} and starting time $t_{s, i}$ are determined simultaneously. Note that $t_{s, 1}$ is the project starting time, given from input data. The procedures from Step 1 to Step 5 are repeated until total cost stops decreasing.

4.2.2 Simulated Annealing Algorithm

Introduction

Simulated annealing (SA) is a stochastic computational technique derived from statistical mechanics for finding near globally optimum solutions to large optimization problems. It was developed by Metropolis (1953) to simulate the annealing process of crystals on a computer. Kirkpatrick et al. (1983) adapted this methodology to an algorithm exploiting the analogy between annealing solids and solving combinatorial optimization problems. The simulated annealing search process attempts to avoid becoming trapped at a local optimum by using a stochastic computational technique to find globally or near globally optimal solutions to combinatorial problems.

The original concept of SA from thermodynamics is that liquids freeze and crystallize, or metals cool and anneal. The SA algorithm is illustrated in pseudo-code in Table 4.1. Kirkpatrick et al. generalized an approach by introducing a multi-temperature approach in which the temperature is lowered slowly in stages. The outer loop (begin ${ }^{1}$ $\ldots .$. end 1) in Table 4.1 indicates that the temperature T is lowered by updating T in each outer loop until T is less than or equal to T_{f}. The inner loop (begin ${ }^{2} \ldots .$. end 2) indicates that at each temperature the system repeats searching for a lower energy state until the system reaches equilibrium. A system in thermal equilibrium at temperature T has its energy probabilistically distributed, according to the Boltzmann probability distribution, $\operatorname{Prob}(E) \sim \exp (-E / k T)$, where k is Boltzmann's constant (Metropolis, 1953). At each temperature a neighboring solution S^{\prime} is chosen at random and the energy change (total cost change), Δ, is computed, where $\Delta=E\left(S^{\prime}\right)-E(S) . E\left(S^{\prime}\right)$ is the energy (total cost) of the new neighboring solution and $E(S)$ is the energy (total cost) of the previous solution. The
new solution is accepted with the probability 1 if $\Delta \leq 0$, and with probability $e^{-\Delta / T}$ if $\Delta>0$. Note that the simulated annealing procedure allows occasional "uphill moves" that have higher energy (total cost) than the current solution in order to avoid getting trapped at a locally optimal solution. These uphill moves are controlled probabilistically by the temperature T and become decreasingly likely toward the end of the process as T decreases (Press et al., 1988).

Table 4.1 Simulated Annealing Algorithm

```
Sub Anneal
    \(S=\) Initial solution \(S_{0}\)
    \(T=\) Initial temperature \(T_{0}\)
    Do while \(\left(T>T_{f}\right)\) : \(\left(\operatorname{begin}^{1}\right)\)
        Do while (not yet in equilibrium): (begin \({ }^{2}\) )
                \(S:=\) Some random neighboring solution of \(S\)
                \(\Delta:=E\left(S^{\prime}\right)-E(S)\left(\right.\) or \(\left.\Delta:=T C\left(S^{\prime}\right)-T C(S) ;\right)\)
                Prob : \(=\min \left(1, e^{-\Delta T}\right)\)
                If random \((1,0) \leq\) Prob then \(S:=S^{\prime}\)
        Loop (end \({ }^{2}\) )
        Update T
    Loop (end \({ }^{1}\) )
    Output best solution
End Sub
```

[Wong, 1988, Modified by Chen, 2003]

Simulated Annealing Algorithm for Work Zone Optimization

The SA algorithm adapted here for work zone optimization is as follows:
Step 0. Generate an initial solution. Calculate average flow volume between two peak traffic periods, \bar{Q}. Given a project starting time, the initial work zone length L_{i} and duration D_{i} can be obtained by using the traffic volume \bar{Q} for each stage and optimizing for steady traffic inflows using steady-demand model in Chapter 3. Here a stage is the
period between two adjacent peak traffic volumes. The stage duration is denoted $D_{s, l} l=1$, 2, \ldots, as shown in Figure 4.13(b). The number of zones in each stage depends on how many D_{i} can be contained within the stage duration. The solution $S=\left(L_{1}, L_{2}, . ., L_{i}, \ldots, L_{m}\right.$, $\left.t_{s, 1}, t_{s, 2}, \ldots, t_{s, i}, \ldots, t_{s, m}\right)$ is the initial solution for work zone lengths and starting times. Set $j=1$ and $k=1, j=1$ to $J_{\max }$ and $k=1$ to $K_{\max }$. Set the values of T_{0} and T_{f}.

Step 1. Generate a neighboring solution. Randomly generate four numbers: n_{1}, n_{2}, n_{3}, and $n_{4} . n_{1}$ and n_{2} are two zones chosen randomly from all work zones in the previous solution. n_{1} or n_{2} is equal to $l+\operatorname{int}\left(m^{*} r\right)$, where int is a function that takes only the integer part of a real number; r is a uniform random number between 0 and $1 . n_{3}$ is a binary random number; in it 0 indicates that zone length decreases by one unit in zone n_{l} and increases by one unit in zone n_{2} while 1 indicates zone length increases by one unit in zone n_{l} and decreases by one unit in zone $n_{2} . n_{4}$ is a binary random number, in which 0 or 1 indicates that an "increasing event" or "decreasing event" occurs in the end or in the beginning of zones, respectively. When zone n_{l} is randomly chosen, $i=n_{l}$, and that zone length increases or decreases by one unit, from L_{i} to L_{i}^{\prime}, while zone n_{2} will decrease or increase by one unit, from L_{j} to L_{j}^{\prime}, to keep the total project length unchanged. Other zone lengths stay unchanged. The details for "Increase" (including "Increase in end" and "Increase in begin"), "Decrease" (including "Decease in end" and "Decrease in begin"), "Check last zone", and "Delete zone", are shown from Figures 4.5 to 4.12. The neighboring solution $S^{\prime}=\left(L_{1}, L_{2}, . ., L_{i}^{\prime}, . . L_{j}^{\prime}, . ., t_{s, 1}, t_{s, 2}, \ldots t_{s, i}^{\prime}, \ldots . t_{s, j}^{\prime}, \ldots t_{s, m}\right)$ is generated after one "Decrease" event and one "Increase" event. Compute the objective function value and the difference between the new and previous total costs, $\Delta T C=T C\left(S^{\prime}\right)-T C(S)$. If $\Delta T C<0$, go to Step 3. Otherwise, go to Step 2.

Step 2. $(\Delta T C>0)$ Select a random variable $\alpha \in U(0,1)$. If $\alpha<\operatorname{Prob}(\Delta T C) \equiv \exp \left(-\Delta T C / T_{j}\right)$, then go to Step 3. If $\alpha \geq \operatorname{Prob}(\Delta T C) \equiv \exp \left(-\Delta T C / T_{j}\right)$, then reject this new solution and go to Step 4.

Step $3(\Delta T C<0$ or $\alpha<\operatorname{Prob}(\Delta T C))$ Accept the new solution S^{\prime} and new total cost $T C\left(S^{\prime}\right)$. Store the new solution and total cost.

Step 4 If $T_{j}>T_{f}$ and $k<K_{\max }$, then $k=k+1$ and go to Step 1, else if $T_{j}>T_{f}$ and $k=K_{\max }$, then reduce $T_{j}, j=j+1, k=1$, and go to Step1. Otherwise, stop.

The flow chart of simulated annealing algorithm for work zone optimization is shown in Figure 4.4.

The new variables shown in Figures 4.4 to 4.12 are defined as follows:
$D_{s, l}$: duration of Stage l;
$J_{\max }$: number of iterations for reducing temperature from T_{0} to T_{f};
$K_{m a x}$: maximum number of iterations for temperature T_{j} to equilibrium;
$L_{\text {assign }}$: deleted last zone length divided by $m-1$, which is averagely assigned to the previous m - 1 zones;
$L_{\text {avg }}$: average zone length in current solution;
$L_{\text {min }}$: minimum zone length in current solution;
L_{R} : project remaining length;
L_{T} : project length;
m : number of work zones of a maintained project;
$N_{\text {limit }}$: maximum number of successful iterations for temperature T_{j} to equilibrium;
$N_{\text {succ }}$: cumulative number of successful iterations for temperature T_{j} to equilibrium;
$N_{r, s u c c}$: cumulative number of successful iterations for repeating generating neighbor solution using the same random numbers under temperature T_{j};
T_{f} : final temperature;
T_{0} : initial temperature;
ΔD : duration unit for increasing or decreasing a unit length, $\Delta D=\Delta L * z_{4}$;
ΔD_{r} : duration difference between new $t_{e, i}$ and old $t_{s, i+l}$ when new $t_{e, i}$ exceeds old

$$
t_{s, i+1} ;
$$

ΔL : length unit for increasing or decreasing, baseline $=0.01 \mathrm{~km}$;
ΔL_{r} : length difference between length unit and the remaining length of the deleted zone;
Δt_{i} : idle time between zone i and zone $i-1$;
$\sum_{i} \Delta t_{i}$: cumulative idle times from zone 1 to zone $i ;$

Figure 4.4 Flow Chart of Simulated Annealing Algorithm for Work Zone Optimization

Figure 4.5 Decrease Event

Figure 4.6 Increase Event

Figure 4.7 "Increaseinend" Event

Figure 4.8 "Increaseinbegin" Event

Figure 4.9 "Decreasinend" Event

Figure 4.10 "Decreaseinbegin" Event

Figure 4.11 "Checklastzone" Event

Figure 4.12 "Deletezone" Event

Optimization Solutions

One policy for work zone optimization is to work continuously over time without any pause between successive zones, as shown in Figure 4.13(a). The alternative policy is that pauses between zones during peak traffic periods are allowable, as shown in Figure 4.13(b).

Figure 4.13 Work Zone Durations

Optimizing Best Project Starting Time

The proposed SA algorithm is based on a given project starting time. Figure 4.13 shows the procedure for finding the best project starting time, indicated by $t_{s, 1}$, the starting time of first zone. The best start time of the entire project can be determined by comparing all minimized total costs corresponding to different project start times.

Figure 4.14 Search for Best Project Starting Time

4.3 Numerical Analysis - Two-Lane Two-Way Highway

The effects of various parameters on work zone lengths and starting times for two-lane highway work zones are examined in this section. The baseline numerical values for each variable in this section are defined in Table 4.2. A numerical example sequences and schedules unequal work zones for a $7.5-\mathrm{km}$ maintenance project on a twolane highway. Table 4.3 shows the hourly traffic distribution on the maintained road. The annual average daily traffic (AADT) is 15,000 vehicles. Two daily peak periods are shown in Figure 4.15.

Table 4.2 Notation and Baseline Numerical Inputs for Two-Lane Two-Way Highway Work Zones

Variables	Description	Input Values
H	Average headway through work zone area	3 s
$A A D T$	Annual average daily traffic on Main Road	15,000
L_{i}	Zone length for zone i	-
L_{T}	Project road length	7.5 km
n_{a}	Number of crashes per 100 million vehicle hours	$40 \mathrm{acc} / 100 \mathrm{mvh}$
V	Average work zone speed	$50 \mathrm{~km} / \mathrm{hr}$
v	Value of user time	12 \$/veh hr
v_{a}	Average crash cost	142,000 \$/crash
v_{d}	Average Cost of Idling Time	800 \$/hr
z_{1}	Fixed setup cost	1,000 \$/zone
z_{2}	Average maintenance cost per lane-kilometer	80,000 \$/lane $\cdot \mathrm{km}$
z_{3}	Fixed setup time	$2 \mathrm{hr} /$ zone
z_{4}	Average maintenance time per lane-kilometer	$6 \mathrm{hr} / \mathrm{lane} \cdot \mathrm{km}$

Table 4.3 AADT and Hourly Traffic Distribution on a Two-Lane Two-Way Highway

Hour	Volume (Both Direction)	\% of AADT	\% of Direction1	$\boldsymbol{Q}_{\mathbf{1}}(\mathbf{v p h})$	$\boldsymbol{Q}_{2}(\mathbf{v p h})$
0	349	2.33%	0.48	167	182
1	350	2.33%	0.48	168	182
2	349	2.33%	0.45	157	192
3	350	2.33%	0.53	185	165
4	349	2.33%	0.53	185	164
5	350	2.33%	0.53	186	164
6	552	3.68%	0.57	315	237
7	900	6.00%	0.56	504	396
8	1,152	7.68%	0.56	645	507
9	1,002	6.68%	0.54	541	461
10	800	5.33%	0.51	408	392
11	649	4.33%	0.51	331	318
12	600	4.00%	0.50	300	300
13	552	3.68%	0.52	287	265
14	650	4.33%	0.51	332	318
15	852	5.68%	0.53	452	400
16	1,100	7.33%	0.49	539	561
17	844	5.63%	0.47	397	447
18	750	5.00%	0.47	353	397
19	702	4.68%	0.47	330	372
20	600	4.00%	0.46	276	324
21	500	3.33%	0.48	240	260
22	349	2.33%	0.48	167	182
23	349	2.33%	0.48	167	182
AADT	$\mathbf{1 5 , 0 0 0}$	$\mathbf{1 0 0 . 0 0 \%}$	-	$\mathbf{7 , 6 3 2}$	$\mathbf{7 , 3 6 8}$

Compared to Powell's Method, we find in Figure 4.15 that for most project starting times considered (18 of 24) SA finds lower total costs while using less computer time (3 minutes with SA vs. 20 minutes with Powell's). Two algorithms are implemented in Visual Basic 6.0 and tested on a personal computer with a 1.8 GHz Pentium 4 CPU and 512 MB memory. Two different but almost equally good project starting times are found by using the SA optimization process. The first best project starting time is 11:00. Its minimized total cost is $\$ 627,714 /$ project, with nine work zones whose optimized lengths of $0.53,0.76,1.07,0.82,1.76,1.08,0.71,0.45$, and 1.34 km add up to 7.5 km , and whose
idling time is 3.96 hours, as shown in Table 4.4(a). The second best project starts at 17:00. Its minimized total cost is $\$ 627,753 /$ project, with eight zones whose optimized lengths of $0.80,1.03,0.77,0.55,1.50,0.77,0.56$, and 1.49 km add up to 7.5 km , and whose idling time is 1.97 hours, as shown in Table 4.4(b). Thus, the solution starting at 17:00 has fewer (8 vs .9) but longer work zones. When starting at 11:00 the first zone is shortened to avoid the afternoon peak period, during which there is a pause. The 17:00 start has already avoided the afternoon peak; it schedules less idling than the 11:00 start. Both cases have pauses during the morning peak, which has the highest traffic flow of the day. In Table 4.4(a) and (b), the agency cost, including maintenance cost and idling cost, is higher if starting at 11:00 $(\$ 612,167)$ than at 17:00 $(\$ 609,580)$. However, the user cost, including queuing delay cost, moving delay cost, and crash cost, is lower $(\$ 15,547)$ for starting at 11:00 than at 17:00 $(\$ 18,174)$. Such tradeoffs between agency costs and user costs should be carefully considered in project scheduling.

Figure 4.15 Hourly Traffic Distributions on Two-Lane Highway and Minimized Total Cost vs. Project Starting Time

Table 4.4(a) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 11:00, $v_{d}=\$ 800 / \mathrm{hr}$

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	0.53	5.17	11.00	16.17	-	44,251
2	0.76	6.55	17.01	23.55	0.84	63,766
3	1.07	8.41	23.55	7.96	0.00	88,218
4	0.82	6.91	9.06	15.96	1.10	69,723
5	0.76	6.55	16.99	23.53	1.02	63,933
6	1.08	8.47	23.53	8.00	0.00	89,063
7	0.71	6.25	9.00	15.25	1.00	60,292
8	0.45	4.69	15.25	19.93	0.00	38,366
9	1.34	10.03	19.93	5.96	0.00	110,103
Total	7.50	63.00			3.96	627,714
Maintenance cost					609,000	
Queuing delay cost					12,862	
Moving delay cost					2,612	
Idling cost						3,167
Crash Cost						627,714
Total cost					83,695	
Total cost/project-km (\$/lane-km)						

Table 4.4(b) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 17:00, $v_{d}=\$ 800 / \mathrm{hr}$

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0 \sim 23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	0.80	6.82	17.00	23.82	-	66,893
2	1.03	8.20	23.82	8.02	0.00	85,521
3	0.77	6.64	9.02	15.67	1.00	65,894
4	0.55	5.32	15.67	20.99	0.00	47,246
5	1.50	11.02	20.99	8.01	0.00	124,550
6	0.77	6.64	8.99	15.63	0.98	65,915
7	0.56	5.38	15.63	21.01	0.00	48,095
8	1.49	10.96	21.01	7.97	0.00	123,639
Total	7.50	61.00			1.97	627,753
Maintenance cost					608,000	
Queuing delay cost					15,182	
Moving delay cost					2,906	
Idling cost					1,580	
Crash Cost					627,753	
Total cost					83,699	
Total cost/project-km (\$/lane-km)						

Figure 4.16 shows that the total project duration decreases as the average cost of idling time v_{d} increases. However, for projects starting at 11:00 the project duration is not sensitive to v_{d} when v_{d} exceeds $\$ 1,900 / \mathrm{hr}$. Because there are no pauses, total project duration cannot decrease even when v_{d} increases. If v_{d} is below $\$ 1,900 / \mathrm{hr}$, maintenance activities should be interrupted during peak periods to avoid user delay costs that exceed idling costs. 9 zones and 63 hours without pauses are scheduled when v_{d} exceeds $\$ 1,900 / \mathrm{hr}$. Table $4.5(\mathrm{a})$ shows the optimized solution when v_{d} is $\$ 2,000 / \mathrm{hr}$. This solution corresponds to the first policy shown in Figure 4.13(a), in which work zones are worked continuously without any pause. Table $4.5(\mathrm{~b})$ shows the optimized solution when v_{d} is $\$ 200 / \mathrm{hr}$. This corresponds to the second policy shown in Figure 4.13(b), which allows pauses between zones during peak traffic periods.

Figure 4.16 Project Duration vs. Average Cost of Idling Time

Table 4.5(a) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 11:00, $v_{d}=\$ 2000 / \mathrm{hr}$

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	0.54	5.25	11.00	16.25	-	45520
2	0.46	4.77	16.25	21.03	0.00	39313
3	1.36	10.17	21.03	7.20	0.00	112187
4	0.30	3.81	7.20	11.01	0.00	26853
5	0.94	7.65	11.01	18.67	0.00	80367
6	1.72	12.33	18.67	7.00	0.00	142662
7	0.22	3.33	7.00	10.33	0.00	19969
8	0.78	6.69	10.33	17.03	0.00	66529
9	1.16	8.97	17.03	2.00	0.00	96600
Total	7.50	63.00			0.00	630,000
Maintenance cost					609,000	
Queuing delay cost					17,849	
Moving delay cost					3,053	
Idling cost						0
Crash Cost					630,000	
Total cost					84,000	
Total cost/project-km (\$/lane-km)						

Table 4.5(b) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 11:00, $v_{d}=\mathbf{\$ 2 0 0} / \mathbf{h r}$

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0 \sim 23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ / \mathrm{zone})$	
1	0.50	4.99	11.00	15.99	-	41,741
2	0.53	5.17	16.98	22.15	0.98	44,469
3	1.15	8.89	22.15	7.05	0.00	94,420
4	0.67	6.01	9.98	16.00	2.94	56,523
5	0.53	5.17	16.98	22.15	0.98	44,468
6	1.15	8.89	22.15	7.05	0.00	94,420
7	0.67	6.01	9.98	16.00	2.94	56,523
8	0.53	5.17	16.98	22.15	0.98	44,468
9	1.15	8.89	22.15	7.05	0.00	94,420
10	0.63	5.77	9.98	15.76	2.94	53,159
Total	7.50	65.00			11.76	624,612
Maintenance cost					610,000	
Queuing delay cost					9,880	
Moving delay cost					2,323	
Idling cost						2,351
Crash Cost						624,612
Total cost					83,282	
Total cost/project-km (\$/lane-km)						

Figure 4.17 shows that fewer and longer zones are optimized as v_{d} increases. This reduces maintenance costs but increases user costs. We find a decrease from 10 to 9 zones (in Figure 4.17) and a decrease in project duration (in Figure 4.16) when v_{d} increases from $\$ 200 / \mathrm{hr}$ to $\$ 300 / \mathrm{hr}$, because fewer zones decrease the setup duration and total project duration. In Figure 4.15, with baseline inputs, we find 11:00 to be the best project starting time. Figure 4.18 indicates that for v_{d} between $\$ 300 / \mathrm{hr}$ and $\$ 900 / \mathrm{hr}, 11: 00$ is the best project starting time. Outside that range, 17:00 is preferable. Note that three total cost drops occur at $v_{d}=700$ to 800,1400 to 1500 (project starting time $=11: 00$), and 1800 to 1900 (project starting time $=17: 00$). These total cost drops are consistent with the project duration drops in Figure 4.16 because increased v_{d} decreases idling time thereby decreasing idling costs more than it increases user delay cost.

Table 4.4(a) and Tables 4.6 (a)-(c) show the optimized results for two-lane highway work zones using values for z_{2} (the average maintenance cost per lanekilometer) of $\$ 80,000, \$ 10,000, \$ 5,000$, and $\$ 100$ per lane-km, respectively. These tables indicate that z_{2} has very slight influence on optimized zone length and user delay cost. Similar results have been obtained from Equation (3.5), in which the optimal zone length is affected by both traffic volumes Q_{1}, Q_{2}, fixed setup cost z_{1}, average maintenance time per lane-kilometer z_{4}. Although that equation applies to steady traffic inflows, similar trends can be expected under time-dependent inflows.

Figure 4.17 Number of Zones vs. Average Cost of Idling Time

Figure 4.18 Minimized Total Cost vs. Average Cost of Idling Time

Table 4.6(a) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 11:00, $\boldsymbol{z}_{2}=\mathbf{\$ 1 0 , 0 0 0} / \mathrm{km}$

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0 \sim 23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	0.52	5.13	11.00	16.13	-	7,189
2	0.74	6.45	16.97	23.41	0.84	10,556
3	1.09	8.55	23.41	7.96	0.00	13,766
4	0.82	6.93	9.05	15.97	1.09	12,526
5	0.74	6.45	16.97	23.41	0.99	10,680
6	1.09	8.55	23.41	7.96	0.00	13,765
7	0.70	6.21	9.00	15.20	1.04	10,685
8	0.45	4.71	15.20	19.91	0.00	7,073
9	1.34	10.05	19.91	5.96	0.00	16,507
Total	7.50	63.00			3.96	102,748
Maintenance cost					84,000	
Queuing delay cost					12,896	
Moving delay cost					2,615	
Idling cost					3,164	
Crash Cost					102,748	
Total cost					13,700	
Total cost/project-km (\$/lane-km)						

Table 4.6(b) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 11:00, $z_{2}=\mathbf{5 , 0 0 0} / \mathrm{km}$

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	0.52	5.13	11.00	16.13	-	4,584
2	0.74	6.45	16.97	23.41	0.84	6,851
3	1.09	8.55	23.41	7.96	0.00	8,310
4	0.82	6.93	9.05	15.97	1.09	8,420
5	0.74	6.45	16.97	23.41	0.99	6,975
6	1.09	8.55	23.41	7.96	0.00	8,310
7	0.70	6.21	9.00	15.20	1.04	7,180
8	0.45	4.71	15.20	19.91	0.00	4,817
9	1.34	10.05	19.91	5.96	0.00	9,802
Total	7.50	63.00			3.96	65,248
Maintenance cost					46,500	
Queuing delay cost					12,896	
Moving delay cost					2,615	
Idling cost						3,164
Crash Cost					73	
Total cost					65,248	
Total cost/project-km (\$/lane-km)				8,700		

Table 4.6(c) Optimized Results for Numerical Example (Two-Lane Highway), Project Starting Time: 11:00, $z_{2}=\$ 100 / \mathrm{km}$

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0 \sim 23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	0.52	5.13	11.00	16.13	-	2,030
2	0.74	6.45	16.97	23.41	0.84	3,219
3	1.09	8.55	23.41	7.96	0.00	2,964
4	0.82	6.93	9.05	15.97	1.09	4,397
5	0.74	6.45	16.97	23.41	0.99	3,343
6	1.09	8.55	23.41	7.96	0.00	2,963
7	0.70	6.21	9.00	15.20	1.04	3,744
8	0.45	4.71	15.20	19.91	0.00	2,607
9	1.34	10.05	19.91	5.96	0.00	3,230
Total	7.50	63.00			3.96	28,498
Maintenance cost					9,750	
Queuing delay cost					12,896	
Moving delay cost					2,615	
Idling cost					3,164	
Crash Cost					28,498	
Total cost					3,800	
Total cost/project-km (\$/lane-km)						

4.4 Numerical Analysis - Four-Lane Two-Way Highway

The effects of various parameters on work zone lengths and starting times for four-lane highway work zones are examined in this section. The baseline numerical values for each variable in this section are defined in Table 4.7. A numerical example sequences and schedules unequal work zones for a $7.5-\mathrm{km}$ maintenance project on a twolane highway. Table 4.8 shows the hourly traffic distribution on the maintained road. The annual average daily traffic (AADT) is 35,000 vehicles. Two daily peak periods are shown in Figure 4.19.

Table 4.7 Notation and Baseline Numerical Inputs for Four-Lane Two-Way Highway Work Zones

Variables	Description	Input Values
c_{o}	Maximum discharge rate without work zone	$2,600 \mathrm{vph}$
c_{w}	Maximum discharge rate along work zone	$1,200 \mathrm{vph}$
H	Average headway through work zone area	3 s
$A A D T$	Annual average daily traffic on main road	3,5000
L_{T}	Project road length	7.5 km
n_{a}	Number of crashes per 100 million vehicle	$40 \mathrm{acc} / 100 \mathrm{mvh}$
	hours	$50 \mathrm{~km} / \mathrm{hr}$
V_{w}	Average work zone speed	$80 \mathrm{~km} / \mathrm{hr}$
V_{a}	Average approaching speed	$12 \$ / \mathrm{veh} \cdot \mathrm{hr}$
v	Value of user time	$142,000 \$ / \mathrm{crash}$
v_{a}	Average crash cost	$800 \$ / \mathrm{hr}$
v_{d}	Average cost of idling time	$1,000 \$ / \mathrm{zone}$
z_{1}	Fixed setup cost	$80,000 \$ / \mathrm{lane} \cdot \mathrm{km}$
z_{2}	Average maintenance cost per lane $\cdot \mathrm{kilometer}$	$2 \mathrm{hr} / \mathrm{zone}$
z_{3}	Fixed setup time	$6 \mathrm{hr} / \mathrm{lane} \cdot \mathrm{km}$
z_{4}	Average maintenance time per lane•kilometer	

Compared to Powell's Method, we find in Figure 4.19 that for most project starting times considered (17 of 24) SA finds lower total costs while using less computer
time (3 minutes with SA vs. 20 minutes with Powell's) for four-lane highway work zones. The best project starting time is found at 21:00 by using the SA optimization process. Its minimized total cost is $\$ 612,908 /$ project, with five work zones whose optimized lengths of $1.52,1.35,1.80,0.91$, and 1.90 km add up to 7.5 km , and whose idling time is 2.03 hours, as shown in Table 4.9.

Table 4.8 AADT and Hourly Traffic Distribution on a Four-Lane Two-Way Highway

Hour	Volume (Both Direction)	\% of AADT	Direction of ($\boldsymbol{Q}_{\mathbf{1}}(\mathbf{v p h})$	$\boldsymbol{Q}_{\mathbf{2}}(\mathbf{v p h})$
0	816	2.33%	0.48	392	424
1	815	2.33%	0.48	391	424
2	816	2.33%	0.45	367	449
3	816	2.33%	0.53	432	384
4	816	2.33%	0.53	432	384
5	816	2.33%	0.53	432	384
6	1,288	3.68%	0.57	734	554
7	2,100	6.00%	0.56	1,176	924
8	2,688	7.68%	0.56	1,505	1,183
9	2,338	6.68%	0.54	1,263	1,075
10	1,865	5.33%	0.51	951	914
11	1,515	4.33%	0.51	772	743
12	1,400	4.00%	0.50	700	700
13	1,288	3.68%	0.52	670	618
14	1,516	4.33%	0.51	773	743
15	1,988	5.68%	0.53	1,054	934
16	2,565	7.33%	0.49	1,257	1,308
17	1,970	5.63%	0.47	926	1,044
18	1,750	5.00%	0.47	822	928
19	1,638	4.68%	0.47	770	868
20	1,400	4.00%	0.46	644	756
21	1,165	3.33%	0.48	559	606
22	816	2.33%	0.48	392	424
23	815	2.33%	0.48	391	424
AADT	$\mathbf{3 5 , 0 0 0}$	$\mathbf{1 0 0 . 0 0 \%}$	-	$\mathbf{1 7 , 8 0 5}$	$\mathbf{1 7 , 1 9 5}$

Figure 4.19 Hourly Traffic Distributions on Four-Lane Highway and Minimized Total Cost vs. Project Starting Time

Table 4.9 Optimized Results for Numerical Example (Four-Lane Highway), Project Starting Time: 21:00, $v_{d}=\$ 800 / \mathrm{hr}$

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ / \mathrm{zone})$	
1	1.52	11.14	21.00	8.14	-	123,778
2	1.35	10.12	9.22	19.35	1.08	111,994
3	1.80	12.82	19.35	8.17	0.00	146,540
4	0.91	7.48	9.12	16.60	0.95	75,929
5	1.90	13.42	16.60	6.03	0.00	154,667
Total	7.50	55.00			2.03	612,908
Maintenance cost					605,000	
Queuing delay cost					1,373	
Moving delay cost					4,883	
Idling cost					1,623	
Crash Cost					612,908	
Total cost				81,721		
Total cost/project-km (\$/lane-km)						

Figure 4.20 shows that the total project duration decreases as the average cost of idling time v_{d} increases. The numbers of zones always keep five zones as v_{d} increases and project durations not including idling time always are 55 hours. This indicates that idling time is necessary even if v_{d} increases. Table 4.10(a) shows the optimized solution with idling time 1.01 hours when v_{d} is $\$ 2,400 / \mathrm{hr}$. Table $4.10(\mathrm{~b})$ shows the optimized solution with idling time 3.90 hours when v_{d} is $\$ 100 / \mathrm{hr}$. These two solutions correspond to the second policy shown in Figure 4.13(b), which allows pauses between zones during peak traffic periods. In two-lane highway case, the idling time is avoided if v_{d} exceeds $\$ 1,900 / \mathrm{hr}$ (Figure 4.16). However, in four-lane highway work zone, even v_{d} reaches $\$ 2,400 / \mathrm{hr}$, idling time is mandatory. This is because queuing delay will be cumulative during peak periods (Figure 4.3) and the queue will dissipate after the peak period in this four-lane highway numerical example. Even if v_{d} increases up to $\$ 2,400 / \mathrm{hr}$, that cannot compensate for the high queuing delay costs at these four-lane highway work zones.

Figure 4.20 Project Duration vs. Average Cost of Idling Time

Table 4.10(a) Optimized Results for Numerical Example (Four-Lane Highway), Project Starting Time: 21:00, $\boldsymbol{v}_{d}=\mathbf{\$ 2 4 0 0} / \mathrm{hr}$

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ / \mathrm{zone})$	
1	1.58	11.50	21.00	8.50	-	129,221
2	1.40	10.42	8.98	19.41	0.48	116,628
3	1.84	13.06	19.41	8.47	0.00	150,272
4	1.13	8.80	9.00	17.80	0.53	94,703
5	1.53	11.20	17.80	5.01	0.00	124,521
Total	7.50	55.00			1.01	615,345
Maintenance cost					605,000	
Queuing delay cost					2,958	
Moving delay cost					4,930	
Idling cost					2,421	
Crash Cost					615,345	
Total cost					82,046	
Total cost/project-km (\$/lane-km)						

Table 4.10(b) Optimized Results for Numerical Example (Four-Lane Highway), Project Starting Time: 21:00, $v_{d}=\$ 100 / \mathrm{hr}$

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0 \sim 23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	1.50	11.02	21.00	8.02	-	122100
2	1.30	9.82	9.82	19.65	1.80	106942
3	1.73	12.40	19.65	8.05	0.00	140773
4	0.78	6.70	9.67	16.38	1.62	64392
5	2.17	15.04	16.86	7.90	0.48	176730
Total	7.50	55.00			3.90	610937
Maintenance cost					605,000	
Queuing delay cost					546	
Moving delay cost					4,976	
Idling cost					390	
Crash Cost					610,937	
Total cost					83,282	
Total cost/project-km (\$/lane-km)						

4.5 Reliability of Simulated Annealing

Figure 4.15 shows that the Simulated Annealing algorithm yields better solutions than Powell's Method. Powell's is a deterministic method whose solutions are reproducible. However, Simulated Annealing is a stochastic method whose solutions vary with different random numbers. To test the reliability of SA, 50 replications of the cost minimization for a project starting at 11:00 are performed with 50 different groups of random numbers. The random numbers are generated by using PMMLCG (Prime Modules Multiplicative Linear Congruential Generators) (Law, 2000). PMMLCG is probably the most widely used and best understood kind of random-number generator (Law, 2000) and this generator applied for SA can cover the most random-number range. Figure 4.21 shows that the total costs of those 50 replications range very tightly between $\$ 627,688$ and $\$ 627,747$. The minimized total costs of the 50 replications have a mean (μ) of $\$ 627,720$ and a standard deviation (σ) of $\$ 12.62$. With such a small relative variance (the coefficient of variation (c.v.) $=\sigma / \mu=2.01 \times 10^{-5}$), we are quite unlikely to find a value much below the mean. Thus we are likely to be very near in total cost to the best possible solution (the "global optimum"). Table 4.11 shows the optimized solution of the $10^{\text {th }}$ replication, which has the lowest minimized total cost $\$ 627,688$ among the 50 replications. The optimized work zone lengths in Tables 4.4(a) and 4.11 are almost the same and only the zone starting times or ending times differ very slightly. The statistical analysis and our numerical examples indicate that Simulated Annealing is very likely to find solutions that are very close in value to the global optimum.

Figure 4.21. Minimized Total Costs in 50 Replications (Two-lane Highway)

Table 4.11 Optimized Results for Numerical Example, Project Starting Time: 11:00, $v_{d}=\$ 800 / \mathrm{hr}$ ($10^{\text {th }}$ replication), Alternative 2.1

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	0.53	5.16	11.00	16.16	-	44,154
2	0.77	6.60	17.00	23.60	0.84	64,502
3	1.07	8.40	23.60	8.00	0.00	88,147
4	0.82	6.90	9.09	15.99	1.09	69,612
5	0.76	6.54	16.99	23.53	1.00	63,817
6	1.08	8.46	23.53	7.99	0.00	88,968
7	0.71	6.24	9.01	15.25	1.02	60,207
8	0.45	4.68	15.25	19.93	0.00	38,271
9	1.34	10.02	19.93	5.95	0.00	110,011
Total	7.50	63.00			3.95	627,688
Maintenance cost					609,000	
Queuing delay cost					12,842	
Moving delay cost					2,612	
Idling cost						3,162
Crash Cost					73	
Total cost					627,688	
Total cost/project-km $(\$ /$ lane-km $)$				83,691		

Chapter V Work Zone Optimization with a Detour

The cost models for Alternative 2.1 (two-lane two-way highway work zones without detour) and Alternative 4.1 (four-lane highway work zones without detour) are extended to analyze time-dependent inflows in Chapter 4. Work zone optimization for other time-dependent alternatives with detours are developed in this chapter.

Methods and solutions will be developed to address the following questions about work zone traffic management plans:

1. When should additional lanes be closed or reopened?
2. What fraction of the traffic should be diverted to specific alternate paths?
3. When should there be pauses in maintenance activities?

In minimizing total costs, different alternatives may be preferable for various traffic levels on the main road and on the detour(s). In Section 5.1, cost functions are developed that are applicable to each alternative for two-lane and four-lane highway work zones. In Section 5.2, optimization methods for a single alternative and mixed alternatives are developed. An improved search method, SAMASD (Simulated Annealing algorithm for mixed alternatives with a single detour), is developed that allows different alternatives to be used for successive zones within a single project. Such mixed alternatives may yield lower minimized total cost than uniform alternatives. Thus, two traffic management plans are developed with uniform alternatives and with mixed alternatives within a single project. In Section 5.3 and 5.4, numerical examples are analyzed for two-lane highway, four-lane highway. Finally, numerical examples for mixed alternatives are presented in Section 5.5.

5.1 Work Zone Cost Functions with a Detour

5.1.1 Queuing Delay on a Detour

In Chapter 3 the congestion and possible queuing delay along a detour are neglected for steady traffic inflows. However, possible queuing delays due to detour capacity and intersections along detour are considered for time-dependent inflows and are derived in this section.

Figure 5.1 shows the queuing delay and queue dissipation on the detour. For Alternative 2.1, no diverted flow affects the original flow $Q_{3}^{i j}$ in Direction 3 (shown in Figure 3.1) under time-dependent traffic inflows. If $Q_{3}^{i j}$ exceeds the detour capacity $c_{d 3}$, a queue develops. The queuing delay is represented by the area D in Figure 5.1.

Then we consider what happens if $p Q_{I}^{i j}$ is diverted to the detour and the flow in Direction 3 is $p Q_{1}^{i j}+Q_{3}^{i j}$ for work zone i. Figure 5.1 shows that the detour queue resulting from work zone $i-1$ is not dissipated completely and the queue length is q_{i-1} as work in zone i starts. The maximum queue length reached in work zone i is:

$$
\begin{align*}
q_{i, \max } & =q_{i-1}+\left(p Q_{l}^{i l}+Q_{3}^{i l}-c_{d 3}\right) D_{i l}+\left(p Q_{l}^{i 2}+Q_{3}^{i 2}-c_{d 3}\right) D_{i 2} \tag{5.1}\\
& \quad+\ldots \ldots .\left(p Q_{1}^{i, j-1}+Q_{3}^{i, j-1}-c_{d 3}\right) D_{i, j-1}
\end{align*}
$$

which is equal to the area A plus q_{i-1}. The area A plus q_{i-1} is equal to the area B , which represents the number of dissipated vehicles. Note that work in zone i is completed at $t_{e, i}$ and there is still a remaining dissipation time $t_{r d, i}$ for zone i. Figure 5.1 indicates that queue is dissipated completely before next zone begins so that the work zone is completed at $t_{e, i}$ and there is still a remaining dissipation time $t_{r d, i}$ for work zone i. Then the detour queuing delay for zone i is the area C . The queuing delay cost for zone i is:

$$
\begin{equation*}
C_{q d, i}=(\text { area of } C) v \tag{5.2}
\end{equation*}
$$

Note that the queuing delay represented by area D , which results from $Q_{3}^{i j}$ only in
Direction 3, is not included in the queuing delay due to the diverted flow $p Q_{1}^{i j}$ in
Direction 3 represented by area C.

Figure 5.1 Queuing Delay and Dissipation of Queue Length along Detour

Here, the user delay cost for work zone i of the diverted flow $p Q_{I}^{i j}$ along the detour due to intersection signal or stop delay, denoted as $C_{i n t i}$, is equal to the flow $p Q_{1}^{i j}$ multiplied by: (1) the maintenance duration per zone, D_{i}, (2) the number of intersections along detour, $N_{\text {int }}$, (3) average waiting time per intersection, $t_{\text {int }}$, and (4) the value of time, v. Thus:

$$
\begin{equation*}
C_{\mathrm{int}, i}=\sum_{j}^{n} p Q_{1}^{i j} D_{i} N_{\mathrm{int}} \frac{t_{\mathrm{int}}}{3600} v \tag{5.3}
\end{equation*}
$$

5.1.2 Two-Lane Highway Work Zone with a Detour

The derivation processes for the cost functions of Alternatives 2.2, 2.3 and 2.4 are similar to the process for Alternative 2.1. However, possible queuing delay costs along detour routes and signal or stop delays are added in this chapter while Assumptions 4 and 6 in Section 3.2.1 are released. The cost functions of Alternatives 2.2, 2.3, and 2.4 are derived as follows.

Alternative 2.2 - Flow on one lane as well as a detour

Figure 3.1(b) shows that the fraction p of the flow $p Q_{l}^{i j}$ in Direction 1 is diverted to the alternate route. The user queuing delay cost for work zone i for Alternative 2.2, $C_{q(1-p) 2, i}^{22}$, can be expressed as:

$$
\begin{equation*}
C_{q(1-p) 2, i}^{22}=\sum_{j}^{n} \frac{\left[(1-p) Q_{1}^{i j}\left(\frac{3600}{H}-(1-p) Q_{1}^{i j}\right)+Q_{2}^{i j}\left(\frac{3600}{H}-Q_{2}^{i j}\right)\right] v}{V\left(\frac{3600}{H}-(1-p) Q_{1}^{i j}-Q_{2}^{i j}\right)} D_{i j} L_{i} \tag{5.4}
\end{equation*}
$$

The possible queuing delay cost of the diverted flow $p Q_{1}^{i j}$ and $Q_{3}^{i j}$ in Direction 3 for zone i, denoted $C_{q d, i}^{22}$, is:

$$
\begin{equation*}
C_{q d, i}^{22}=(\text { area of } C) v \tag{5.5}
\end{equation*}
$$

where the area of C is shown in Figure 5.1. The user delay cost of the diverted flow $p Q_{1}^{i j}$ from Direction 1 along detour due to intersection signal or stop delay, denoted as $C_{\text {inti } i}^{22}$, is:

$$
\begin{equation*}
C_{i n t i}^{22}=\sum_{j}^{n} p Q_{1}^{i j} D_{i} N_{i n t} \frac{t_{i n t}}{3600} v \tag{5.6}
\end{equation*}
$$

The combined queuing delay cost for the maintained road AB and the detour $C_{q i}^{22}$ is:

$$
\begin{equation*}
C_{q i}^{22}=C_{q(1-p), i}^{22}+C_{q d, i}^{22}+C_{i n t, i}^{22} \tag{5.7}
\end{equation*}
$$

The moving delay cost of the remaining traffic flow in Direction $1,(1-p) Q_{1}^{i j}$, and $Q_{2}^{i j}$, for zone i, denoted $C_{v(1-p) 2, i}^{22}$, is formulated as:

$$
\begin{equation*}
C_{v(l-p), i}^{22}=\sum_{j}^{n}\left((1-p) Q_{i}^{i j}+Q_{i}^{i j}\right) D_{i j}\left(\frac{L_{i}}{V}-\frac{L_{i}}{V_{0}}\right) v \tag{5.8}
\end{equation*}
$$

The moving delay cost of the diverted flow $p Q_{1}^{i j}$ from Direction 1, denoted as $C_{v p, i}^{22}$, is:

$$
\begin{equation*}
C_{v p i}^{22}=\sum_{j}^{n} p Q_{i}^{i j} D_{i}\left[\frac{L_{d l}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{3-}}-\frac{L_{t}}{V_{0}}\right] v \tag{5.9}
\end{equation*}
$$

The moving delay cost $C_{v 3, i}^{22}$ to the original flow on the detour, $Q_{3}^{i j}$, as affected by the $p Q_{1}^{i j}$, is:

$$
\begin{equation*}
C_{v 3, i}^{22}=\sum_{j}^{n} Q_{3}^{i j} D_{i}\left(\frac{L_{d 2}}{V_{d}^{3-3}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{5.10}
\end{equation*}
$$

The combined moving delay cost for the maintained road AB and the detour $C_{v i}^{22}$ is:

$$
\begin{equation*}
C_{v i}^{22}=C_{v(1-p), i}^{22}+C_{v p, i}^{22}+C_{v, i}^{22} \tag{5.11}
\end{equation*}
$$

The idling cost for zone i $C_{I i}^{22}$ is:

$$
\begin{equation*}
C_{I i}^{22}=v_{d} \Delta t_{i} \tag{5.12}
\end{equation*}
$$

The crash cost for zone $i, C_{a i}^{22}$, is expressed as:

$$
\begin{equation*}
C_{a i}^{22}=\frac{\left(C_{q i}^{22}+C_{v i}^{22}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.13}
\end{equation*}
$$

The maintenance cost for zone $i, C_{m i}^{22}$, is:

$$
\begin{equation*}
C_{m i}^{22}=z_{1}+z_{2} L_{i} \tag{5.14}
\end{equation*}
$$

The total cost for work zone $i, C_{t i}^{22}$, is:

$$
\begin{equation*}
C_{t i}^{22}=\left(z_{1}+z_{2} L_{i}\right)+C_{q i}^{22}+C_{v i}^{22}+v_{d} \Delta t_{i}+\frac{\left(C_{q i}^{22}+C_{v i}^{22}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.15}
\end{equation*}
$$

The total cost for resurfacing road length L_{T} by scheduling m work zones, $C_{P T}^{22}$, is expressed as:

$$
\begin{align*}
C_{P T}^{22} & =\sum_{i}^{m} C_{t i}^{22} \\
& =\sum_{i}^{m}\left(z_{1}+z_{2} L_{i}\right)+\sum_{i}^{m} C_{q i}^{22}+\sum_{i}^{m} C_{v i}^{22}+\sum_{i}^{m} v_{d} \Delta t_{i}+\sum_{i}^{m} \frac{\left(C_{q i}^{22}+C_{v i}^{22}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.16}
\end{align*}
$$

Because the results in Chapter 4 were better with Simulated Annealing than with Powell's method, the total cost in Eq.(5.16) will be minimized with the Simulated Annealing algorithm proposed in Section 4.2.

Alternative 2.3-One direction along the work zone and the other detoured

Figure 3.1(c) shows that the entire flow $Q_{1}^{i j}$ in Alternative 2.1 is diverted to the alternate route. The possible queuing delay cost of the diverted flow $Q_{1}^{i j}$ and $Q_{3}^{i j}$ in Direction 3 for zone i, denoted $C_{q d, i}^{23}$, is:

$$
\begin{equation*}
C_{q d, i}^{23}=(\text { area of } C) v \tag{5.17}
\end{equation*}
$$

where the area of C is shown in Figure 5.1 and the p value is 1 (full diversion). The user delay cost of the diverted flow $Q_{1}^{i j}$ from Direction 1 along detour due to intersection signal or stop delay, denoted as $C_{\text {int }, i}^{23}$, is:

$$
\begin{equation*}
C_{i n t, i}^{23}=\sum_{j}^{n} Q_{l}^{i j} D_{i} N_{i n t} \frac{t_{i n t}}{3600} v \tag{5.18}
\end{equation*}
$$

The combined queuing delay cost for the maintained road AB and the detour $C_{q i}^{23}$ can be derived as:

$$
\begin{equation*}
C_{q i}^{23}=C_{q d, i}^{23}+C_{i n t, i}^{23} \tag{5.19}
\end{equation*}
$$

The user moving delay cost in Direction 1 for zone i, denoted as $C_{v l, i}^{23}$, has the same formulation as Eq. (5.9) but with $Q_{1}^{i j}$ substituted for $p Q_{1}^{i j}$.

$$
\begin{equation*}
C_{v l, i}^{23}=\sum_{j}^{n} Q_{1}^{i j} D_{i}\left[\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{0}}\right] v \tag{5.20}
\end{equation*}
$$

The moving delay cost of $Q_{2}^{i j}$ along work zone for zone i, denoted $C_{v 2, i}^{23}$, is formulated as:

$$
\begin{equation*}
C_{v 2, i}^{23}=\sum_{j}^{n} Q_{2}^{i j} D_{i j}\left(\frac{L_{i}}{V}-\frac{L_{i}}{V_{0}}\right) v \tag{5.21}
\end{equation*}
$$

The moving delay cost $C_{v 3, i}^{23}$ of the original flow on the detour, $Q_{3}^{i j}$, as affected by the $Q_{1}^{i j}$, has the same formulation as Eq.(5.10).

$$
\begin{equation*}
C_{v 3, i}^{23}=\sum_{j}^{n} Q_{3}^{i j} D_{i}\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{5.22}
\end{equation*}
$$

The combined moving delay cost for the maintained road AB and the detour $C_{v i}^{23}$ is:

$$
\begin{equation*}
C_{v i}^{23}=C_{v l, i}^{23}+C_{v 2, i}^{23}+C_{v 3, i}^{23} \tag{5.23}
\end{equation*}
$$

The idling cost for zone $i C_{I i}^{23}$ is

$$
\begin{equation*}
C_{I i}^{23}=v_{d} \Delta t_{i} \tag{5.24}
\end{equation*}
$$

The crash cost for zone $i, C_{a i}^{23}$, is formulated as

$$
\begin{equation*}
C_{a i}^{23}=\frac{C_{q i}^{23}+C_{v i}^{23}}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.25}
\end{equation*}
$$

The maintenance cost for zone $i, C_{m i}^{23}$, is $z_{1}+z_{2} L_{i}$. Then the total cost for zone i, $C_{t i}^{23}$, is

$$
\begin{equation*}
C_{t i}^{23}=\left(z_{1}+z_{2} L_{i}\right)+C_{q i}^{23}+C_{v i}^{23}+v_{d} \Delta t_{i}+\frac{\left(C_{q i}^{23}+C_{v i}^{23}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.26}
\end{equation*}
$$

The total cost for resurfacing road length $L_{T}, C_{P T}^{23}$, is expressed as:

$$
\begin{align*}
C_{P T}^{23} & =\sum_{i}^{m} C_{t i}^{23} \\
& =\sum_{i}^{m}\left(z_{1}+z_{2} L_{i}\right)+\sum_{i}^{m} C_{q i}^{23}+\sum_{i}^{m} C_{v i}^{23}+\sum_{i}^{m} v_{d} \Delta t_{i}+\sum_{i}^{m} \frac{\left(C_{q i}^{23}+C_{v i}^{23}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.27}
\end{align*}
$$

The total cost in Eq.(5.27) will be minimized with a Simulated Annealing algorithm.

Alternative 2.4 - Both directions detoured and both lanes closed for work

In Alternative 2.4, as shown in Figure 3.1(d), the entire flows $Q_{1}^{i j}$ and $Q_{2}^{i j}$ are diverted to the alternate route and both lanes between A and B are entirely closed for maintenance. The queuing delay cost of the diverted flow $Q_{1}^{i j}$ plus $Q_{3}^{i j}$ in Direction 3 and the diverted flow $Q_{2}^{i j}$ plus $Q_{4}^{i j}$ in Direction 4, denoted $C_{q d, i}^{24}$, is:

$$
\begin{equation*}
C_{q d, i}^{24}=\left(\text { area of } C+\text { area of } C^{\prime}\right) v \tag{5.28}
\end{equation*}
$$

where the area of C is shown in Figure 5.1 and the p value is 1 (full diversion). The area of C^{\prime} is the queuing delay of the diverted flow $Q_{2}^{i j}$ plus $Q_{4}^{i j}$ in Direction 4. The calculation of area of C^{\prime} is similar to the area of C but with $Q_{2}^{i j}$ substituted for $Q_{1}^{i j}$, with $Q_{4}^{i j}$ substituted for $Q_{3}^{i j}$, and with $c_{d 4}$ substituted for $c_{d 3}$, where $c_{d 4}$ is the detour capacity in

Direction 4.

The user delay cost of the diverted flow $Q_{1}^{i j}$ from Direction 1 and the diverted flow $Q_{2}^{i j}$ from Direction 2 along detour due to intersection signal or stop delay, denoted as $C_{i n t i}^{24}$, is:

$$
\begin{equation*}
C_{i n t, i}^{24}=\sum_{j}^{n}\left(Q_{1}^{i j}+Q_{2}^{i j}\right) D_{i} N_{\text {int }} \frac{t_{\text {int }}}{3600} v \tag{5.29}
\end{equation*}
$$

The combined queuing delay cost for the maintained road AB and the detour $C_{q i}^{24}$ can be derived as:

$$
\begin{equation*}
C_{q i}^{24}=C_{q d, i}^{24}+C_{i n t, i}^{24} \tag{5.30}
\end{equation*}
$$

The user moving delay cost in Direction 1 for zone i, denoted as $C_{v l, i}^{24}$, has the same formulation as Eq.(5.20).

$$
\begin{equation*}
C_{v l, i}^{24}=\sum_{j}^{n} Q_{l}^{i j} D_{i}\left[\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{0}}\right] v \tag{5.31}
\end{equation*}
$$

The user moving delay cost of the flow $Q_{2}^{i j}$ for zone i, denoted as $C_{v 2}^{24}$, has the same formulation as Eq.(5.31) but with Q_{2} substituted for $p Q_{1}^{i j}$ and with $V_{d}^{* 4}$ substituted for $V_{d}^{* 3}$.

$$
\begin{equation*}
C_{v 2, i}^{24}=\sum_{j}^{n} Q_{2}^{i j} D_{i}\left[\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 4}}-\frac{L_{t}}{V_{0}}\right] v \tag{5.32}
\end{equation*}
$$

The moving delay cost $C_{v 3, i}^{24}$ to the original flow on the detour in Direction 3, $Q_{3}^{i j}$, as affected by the $Q_{l}^{i j}$, has the same formulation as Eq. (5.22).

$$
\begin{equation*}
C_{v 3, i}^{24}=\sum_{j}^{n} Q_{3}^{i j} D_{i}\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{5.33}
\end{equation*}
$$

Similarly, the moving delay cost $C_{v 4, i}^{24}$ of the original flow on the detour in Direction 4, $Q_{4}^{i j}$, as affected by the $Q_{2}^{i j}$, has the same formulation as Eq. (5.33) but with $Q_{4}^{i j}$ substituted for $Q_{3}^{i j}$ and $V_{d}^{* 4}$ substituted for $V_{d}^{* 3}$.

$$
\begin{equation*}
C_{v 4, i}^{24}=\sum_{j}^{n} Q_{4}^{i j} D_{i}\left(\frac{L_{d 2}}{V_{d}^{* *}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{5.34}
\end{equation*}
$$

The combined moving delay cost for the maintained road AB and the detour $C_{v i}^{24}$ is:

$$
\begin{equation*}
C_{v i}^{24}=C_{v l, i}^{24}+C_{v 2, i}^{24}+C_{v 3, i}^{24}+C_{v 4, i}^{24} \tag{5.35}
\end{equation*}
$$

The idling cost for zone $i C_{I i}^{24}$ is:

$$
\begin{equation*}
C_{I i}^{24}=v_{d} \Delta t_{i} \tag{5.36}
\end{equation*}
$$

The crash cost for zone $i, C_{a i}^{24}$, is formulated as:

$$
\begin{equation*}
C_{a i}^{24}=\frac{C_{q i}^{24}+C_{v i}^{24}}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.37}
\end{equation*}
$$

The maintenance cost for zone $i, C_{m i}^{24}$, is $z_{1}+z_{2} L_{i}$. Then the total cost for zone i, $C_{t i}^{24}$, is:

$$
\begin{equation*}
C_{t i}^{24}=\left(z_{1}+z_{2} L_{i}\right)+C_{q i}^{24}+C_{v i}^{24}+v_{d} \Delta t_{i}+\frac{\left(C_{q i}^{24}+C_{v i}^{24}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.38}
\end{equation*}
$$

The total cost for resurfacing road length $L_{T}, C_{P T}^{24}$, is expressed as:

$$
\begin{align*}
C_{P T}^{24} & =\sum_{i}^{m} C_{t i}^{24} \\
& =\sum_{i}^{m}\left(z_{1}+z_{2} L_{i}\right)+\sum_{i}^{m} C_{q i}^{24}+\sum_{i}^{m} C_{v i}^{24}+\sum_{i}^{m} v_{d} \Delta t_{i}+\sum_{i}^{m} \frac{\left(C_{q i}^{24}+C_{v i}^{24}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.39}
\end{align*}
$$

5.1.3 Four-Lane Highway Work Zone with a Detour

The derivation processes for the cost functions of Alternatives 4.2, 4.3 and 4.4 are similar to the process for Alternative 4.1. Possible queuing delay costs along detour routes and signal or stop delays are added and Assumptions 3 and 5 in Section 3.3.1 are released. Queuing delay on the detour is developed as shown in Section 5.1.1 and cost functions for Alternatives 4.2, 4.3, and 4.4 are derived as follows.

Alternative 4.2 - A fraction of Q_{1} traffic through detour

Figure 3.2(b) shows that the fraction p of the flow $p Q_{1}^{i j}$ in Direction 1 is diverted to the alternate route. The user queuing delay cost of the remaining flow $(1-p) Q_{1}^{i j}$ in Direction 1 for work zone i for Alternative 4.2, $C_{q(1-p), i}^{42}$, is the area of C in Figure 4.3 multiplied by v but with $(1-p) Q_{1}^{i j}$ substituted for $Q_{1}^{i j}$.

$$
\begin{equation*}
C_{q(l-p), i}^{42}=(\text { area of } C) v \tag{5.40}
\end{equation*}
$$

The possible queuing delay cost of the diverted flow $p Q_{1}^{i j}$ and $Q_{3}^{i j}$ in Direction 3 for zone i, denoted $C_{q d, i}^{42}$, is the area C in Figure 5.1 multiplied by v.

$$
\begin{equation*}
C_{q d, i}^{42}=(\text { area of } C) v \tag{5.41}
\end{equation*}
$$

The user delay cost of the diverted flow $p Q_{1}^{i j}$ from Direction 1 along detour due to intersection signal or stop delay, denoted as $C_{\text {int } i}^{42}$, is:

$$
\begin{equation*}
C_{i n t, i}^{42}=\sum_{j}^{n} p Q_{l}^{i j} D_{i} N_{i n t} \frac{t_{i n t}}{3600} v \tag{5.42}
\end{equation*}
$$

The combined queuing delay cost for the maintained road AB and the detour $C_{q i}^{42}$ can be derived as:

$$
\begin{equation*}
C_{q i}^{42}=C_{q(1-p), i}^{42}+C_{q d, i}^{42}+C_{i n t, i}^{42} \tag{5.43}
\end{equation*}
$$

The moving delay cost of the traffic flows $(1-p) Q_{1}^{i j}$ in work zone i, denoted $C_{v(l-p), i}^{42}$, is the cost increment due to the zone. It is the moving delay $t_{m(1-p)}^{i j}$ multiplied by the average delay cost v :

$$
\begin{equation*}
C_{v(l-p), i}^{42}=\sum_{j=1}^{n} t_{m(l-p)}^{i j} v \tag{5.44}
\end{equation*}
$$

where $t_{m(1-p)}^{i j}=$ moving delay incurred by the approaching traffic flow $(1-p) Q_{1}^{i j}$ for zone i in each period $D_{i j}$ of work zone duration D_{i}. The $t_{m(1-p)}^{i j}$ is a function of the difference between the travel time on a road with and without a work zone:

$$
\begin{array}{ll}
t_{m(1-p)}^{i j}=\left(\frac{L_{i}}{V_{w}}-\frac{L_{i}}{V_{a}}\right)(1-p) Q_{1}^{i j} D_{i j} & \text { when }(1-p) Q_{1}^{i j} \leq c_{w} \\
t_{m(1-p)}^{i j}=\left(\frac{L_{i}}{V_{w}}-\frac{L_{i}}{V_{a}}\right) c_{w} D_{i j} & \text { when }(1-p) Q_{1}^{i j}>c_{w} \tag{5.45b}
\end{array}
$$

The moving delay cost of the diverted flow $p Q_{1}^{i j}$ from Direction 1, denoted as $C_{v p, i}^{42}$, is:

$$
\begin{equation*}
C_{v p, i}^{42}=\sum_{j}^{n} p Q_{l}^{i j} D_{i}\left[\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{0}}\right] v \tag{5.46}
\end{equation*}
$$

The moving delay cost $C_{v 3, i}^{42}$ to the original flow on the detour, $Q_{3}^{i j}$, as affected by the $p Q_{1}^{i j}$ is:

$$
\begin{equation*}
C_{v 3, i}^{42}=\sum_{j}^{n} Q_{3}^{i j} D_{i}\left(\frac{L_{d 2}}{V_{d}^{4-}} \frac{L_{d 2}}{V_{d 0}}\right) v \tag{5.47}
\end{equation*}
$$

The combined moving delay cost for the maintained road AB and the detour $C_{v i}^{42}$ can be derived as:

$$
\begin{equation*}
C_{v i}^{42}=C_{v(1-p), i}^{42}+C_{v p, i}^{42}+C_{v 3, i}^{42} \tag{5.48}
\end{equation*}
$$

The idling cost for zone $i C_{I i}^{42}$ is:

$$
\begin{equation*}
C_{I i}^{42}=v_{d} \Delta t_{i} \tag{5.49}
\end{equation*}
$$

The crash cost for zone $i, C_{a i}^{42}$, is formulated as:

$$
\begin{equation*}
C_{a i}^{42}=\frac{\left(C_{q i}^{42}+C_{v i}^{42}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.50}
\end{equation*}
$$

The maintenance cost for zone $i, C_{m i}^{42}$, is $z_{1}+z_{2} L_{i}$. Then the total cost for zone i, $C_{t i}^{42}$, is:

$$
\begin{equation*}
C_{t i}^{42}=\left(z_{1}+z_{2} L_{i}\right)+C_{q i}^{42}+C_{v i}^{42}+v_{d} \Delta t_{i}+\frac{\left(C_{q i}^{42}+C_{v i}^{42}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.51}
\end{equation*}
$$

The total cost for resurfacing road length L_{T} by scheduling m work zones, $C_{P T}^{42}$, is expressed as:

$$
\begin{align*}
C_{P T}^{42} & =\sum_{i}^{m} C_{t i}^{42} \\
& =\sum_{i}^{m}\left(z_{1}+z_{2} L_{i}\right)+\sum_{i}^{m} C_{q i}^{42}+\sum_{i}^{m} C_{v i}^{42}+\sum_{i}^{m} v_{d} \Delta t_{i}+\sum_{i}^{m} \frac{\left(C_{q i}^{42}+C_{v i}^{42}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.52}
\end{align*}
$$

Alternative 4.3 - All Q_{I} traffic through detour, allowing work zone on both lanes in

 Direction 1Figure 3.2(c) shows the entire flow $Q_{l}^{i j}$ in Direction 1 being diverted to the alternate route. There is no queuing delay in Direction 1. The possible queuing delay cost of the diverted flow $Q_{1}^{i j}$ and $Q_{3}^{i j}$ in Direction 3 for zone i, denoted $C_{q d, i}^{43}$, is the area of C in Figure 5.1 multiplied by v.

$$
\begin{equation*}
C_{q d, i}^{43}=(\text { area of } C) v \tag{5.53}
\end{equation*}
$$

The user delay cost of the diverted flow $Q_{1}^{i j}$ from Direction 1 along detour due to intersection signal or stop delay, denoted as $C_{\text {int } i}^{43}$, is:

$$
\begin{equation*}
C_{i n t, i}^{43}=\sum_{j}^{n} Q_{l}^{i j} D_{i} N_{\text {int }} \frac{t_{\text {int }}}{3600} v \tag{5.54}
\end{equation*}
$$

The combined queuing delay cost for the maintained road AB and the detour $C_{q i}^{43}$ can be derived as:

$$
\begin{equation*}
C_{q i}^{43}=C_{q d, i}^{43}+C_{i n t, i}^{43} \tag{5.55}
\end{equation*}
$$

The moving delay cost of the diverted flow $Q_{1}^{i j}$ from Direction 1, denoted as
$C_{v l, i}^{43}$, is:

$$
\begin{equation*}
C_{v l, i}^{43}=\sum_{j}^{n} Q_{l}^{i j} D_{i}\left[\frac{L_{d 1}+L_{d 3}}{V_{0}}+\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{t}}{V_{0}}\right] v \tag{5.56}
\end{equation*}
$$

The moving delay cost $C_{v 3, i}^{43}$ to the original flow on the detour, $Q_{3}^{i j}$, as affected by the $Q_{1}^{i j}$ is:

$$
\begin{equation*}
C_{v 3, i}^{43}=\sum_{j}^{n} Q_{3}^{i j} D_{i}\left(\frac{L_{d 2}}{V_{d}^{* 3}}-\frac{L_{d 2}}{V_{d 0}}\right) v \tag{5.57}
\end{equation*}
$$

The combined moving delay cost for the maintained road AB and the detour $C_{v i}^{43}$ can be derived as:

$$
\begin{equation*}
C_{v i}^{43}=C_{v l, i}^{43}+C_{v 3, i}^{43} \tag{5.58}
\end{equation*}
$$

The idling cost for zone $i C_{i d l e, i}^{43}$ is:

$$
\begin{equation*}
C_{i d l e, i}^{43}=v_{d} \Delta t_{i} \tag{5.59}
\end{equation*}
$$

The crash cost for zone $i, C_{a i}^{43}$, is formulated as:

$$
\begin{equation*}
C_{a i}^{43}=\frac{\left(C_{q i}^{43}+C_{v i}^{43}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.60}
\end{equation*}
$$

The maintenance cost for zone $i, C_{m i}^{43}$, is $z_{1}+z_{2} L_{i}$. Then the total cost for zone i, $C_{t i}^{43}$, is:

$$
\begin{equation*}
C_{t i}^{43}=\left(z_{1}+z_{2} L_{i}\right)+C_{q i}^{43}+C_{v i}^{43}+v_{d} \Delta t_{i}+\frac{\left(C_{q i}^{43}+C_{v i}^{43}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.61}
\end{equation*}
$$

The total cost for resurfacing road length L_{T} by scheduling m work zones, $C_{P T}^{43}$, is expressed as:

$$
\begin{align*}
C_{P T}^{43} & =\sum_{i}^{m} C_{t i}^{43} \\
& =\sum_{i}^{m}\left(z_{l}+z_{2} L_{i}\right)+\sum_{i}^{m} C_{q i}^{43}+\sum_{i}^{m} C_{v i}^{43}+\sum_{i}^{m} v_{d} \Delta t_{i}+\sum_{i}^{m} \frac{\left(C_{q i}^{43}+C_{v i}^{43}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.62}
\end{align*}
$$

Alternative 4.4 - Crossover of all Q_{1} traffic into one opposite lane, allowing work on

both lanes in Direction 1

Figure 3.2(d) shows that the entire flow $Q_{1}^{i j}$ in Direction 1 crosses over to one lane in the opposite direction. Both lanes in Direction 1 are closed for a work zone. The
flow $Q_{2}^{i j}$ in Direction 2 only uses the remaining lane. The user queuing delay cost of the flow $Q_{l}^{i j}$ in Direction 1 for work zone $i, C_{q 1, i}^{44}$, is:

$$
\begin{equation*}
C_{q 1, i}^{44}=(\text { area of } C) v \tag{5.63}
\end{equation*}
$$

where the area C is the queuing delay of the flow $Q_{l}^{i j}$, as shown in Figure 4.3.

The user queuing delay cost of the flow $Q_{2}^{i j}$ in Direction 2 for work zone $i, C_{q 2, i}^{44}$, is:

$$
\begin{equation*}
C_{q 2, i}^{44}=\left(\text { area of } C^{\prime}\right) v \tag{5.64}
\end{equation*}
$$

where the area of C^{\prime} is the queuing delay of the flow $Q_{2}^{i j}$. Area C^{\prime} is determined as area C but with $Q_{2}^{i j}$ substituted for $Q_{I}^{i j}$.

The combined queuing delay cost for the maintained road AB and the detour $C_{q i}^{44}$ can be derived as:

$$
\begin{equation*}
C_{q i}^{44}=C_{q l, i}^{44}+C_{q 2, i}^{44} \tag{5.65}
\end{equation*}
$$

The moving delay cost of the traffic flows $Q_{I}^{i j}$ in work zone i, denoted $C_{v, i}^{44}$, is:

$$
\begin{array}{ll}
C_{v l, i}^{44}=\left(\frac{L_{i}}{V_{w}}-\frac{L_{i}}{V_{a}}\right) Q_{l}^{i j} D_{i j} v & \text { when } Q_{l}^{i j} \leq c_{w} \\
C_{v l, i}^{44}=\left(\frac{L_{i}}{V_{w}}-\frac{L_{i}}{V_{a}}\right) c_{w} D_{i j} v & \text { when } Q_{l}^{i j}>c_{w} \tag{5.66b}
\end{array}
$$

The moving delay cost of the traffic flows $Q_{2}^{i j}$ in work zone i, denoted $C_{v 2, i}^{44}$, is:

$$
\begin{array}{ll}
C_{v 2, i}^{44}=\left(\frac{L_{i}}{V_{w}}-\frac{L_{i}}{V_{a}}\right) Q_{2}^{i j} D_{i j} v & \text { when } Q_{2}^{i j} \leq c_{w} \\
C_{v 2, i}^{44}=\left(\frac{L_{i}}{V_{w}}-\frac{L_{i}}{V_{a}}\right) c_{w} D_{i j} v & \text { when } Q_{2}^{i j}>c_{w} \tag{5.67b}
\end{array}
$$

The combined moving delay cost for the maintained road AB and the detour $C_{v i}^{44}$ can be derived as:

$$
\begin{equation*}
C_{v i}^{44}=C_{v l, i}^{44}+C_{v 2, i}^{44} \tag{5.68}
\end{equation*}
$$

The idling cost for zone $i C_{\text {idle }, i}^{44}$ is:

$$
\begin{equation*}
C_{i d l e, i}^{44}=v_{d} \Delta t_{i} \tag{5.69}
\end{equation*}
$$

The crash cost for zone $i, C_{a i}^{44}$, is formulated as:

$$
\begin{equation*}
C_{a i}^{44}=\frac{\left(C_{q i}^{44}+C_{v i}^{44}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.70}
\end{equation*}
$$

The maintenance cost for zone $i, C_{m i}^{44}$, is $z_{l}+z_{2} L_{i}$. Then the total cost for zone i, $C_{t i}^{44}$, is:

$$
\begin{equation*}
C_{t i}^{44}=\left(z_{1}+z_{2} L_{i}\right)+C_{q i}^{44}+C_{v i}^{44}+v_{d} \Delta t_{i}+\frac{\left(C_{q i}^{44}+C_{v i}^{44}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.71}
\end{equation*}
$$

The total cost for resurfacing road length L_{T} by scheduling m work zones, $C_{P T}^{44}$, is expressed as:

$$
\begin{align*}
C_{P T}^{44} & =\sum_{i}^{m} C_{t i}^{44} \\
& =\sum_{i}^{m}\left(z_{1}+z_{2} L_{i}\right)+\sum_{i}^{m} C_{q i}^{44}+\sum_{i}^{m} C_{v i}^{44}+\sum_{i}^{m} v_{d} \Delta t_{i}+\sum_{i}^{m} \frac{\left(C_{q i}^{44}+C_{v i}^{44}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{5.72}
\end{align*}
$$

5.2 Optimization Methods

5.2.1 Uniform Alternatives and Mixed Alternatives

Until now, the same alternative was assumed to be applied in all zones of one project, which is called uniform alternatives here. Numerical examples for uniform alternatives will be analyzed in Sections 5.3 and 5.4 for two-lane highway and four-lane highway work zones based on the Simulated Annealing algorithm developed in Chapter 4, which is called "SAUA" (Simulated Annealing algorithm for Uniform Alternatives). If the alternatives consider a single detour, i.e. Alternatives $2.2,2.3,2,4,4.2$, and 4.3 , the SA algorithm is called "SAUASD" (SAUA with a Single Detour). In this section, we consider the possible advantages of using different alternatives for different zones within a project.

Sections 5.1 and its numerical examples indicate that the optimization for uniform alternatives is developed and alternative selection is determined by which alternative (and what diverted fraction if Alternative 2.2 or 4.2 is preferable) yields the lowest total cost. Each project is optimized by a given single alternative, with or without a detour. However, lower minimized total cost for a project may be obtained by mixing several alternatives within a project. A traffic management plan combining different alternatives is shown in Figure 5.2. For example, Alternatives 2.3 and 2.2 might have minimized total cost during the off-peak period and Alternative 2.1 might have minimized total cost during the peak period.

An improved Simulated Annealing algorithm is developed here to search through possible mixed alternatives and diverted fractions for all zones within a project in order to minimize total cost. The improved method is called "SAMASD" (Simulated Annealing
algorithm for Mixed Alternatives with a Single Detour). Thus, two traffic management plans are developed with uniform alternatives and with mixed alternatives within a single project.

Figure 5.2 Traffic Management Plan Combining Different Alternatives

5.2.2 Simulated Annealing Algorithm for Mixed Alternatives with a Single DetourSAMASD

Figure 5.3 shows the improved Simulated Annealing algorithm for integrating mixed alternatives within a project. This SAMASD algorithm is developed by modifying the Simulated Annealing algorithm developed in Section 4.2.2. The SAMASD algorithm is shown as follows:

1. Add new variables $A_{i}, p_{i}, A_{\text {opt }, i}, p_{\text {opt }, i}$ in the Step 0 in Section 4.2.2, where A_{i} : Alternative for zone $i, A_{i}=2.1,22,23$, and $24, i=1, \ldots, m$;
p_{i} : diverted fraction for zone $i, p_{i}=0-1, i=1, \ldots, m ;$
$A_{\text {opt }, i}$: final optimal Alternative for zone $i, A_{\text {opt }, i}=21,22,23$, and $24, i=1, \ldots, m$; $p_{\text {opt }, i}$: final optimal diverted fraction for zone $i, p_{\text {opt }, i}=0-1, i=1, \ldots, m$.

The notation for two-lane highway alternatives is applied here. "21" represents Alternative 2.1. For four-lane highway work zones, 21, 22, 23, and 24 can be substituted for $41,42,43$, and 44 , respectively.

Set the initial $A_{\text {opt }, i}=21, p_{\text {opt }, i}=0, i=1, \ldots, m$ for all zones.
2. Add "Determine alternatives and diverted fraction for n_{1} and n_{2} " after generating random neighboring solution in Step 1. Test all possible A_{i} and p_{i} combinations and calculate the total cost. If the total cost for the current combination is lower than for the previous combination, update $A_{\text {opt }, i}$ and $p_{\text {opt }, i}$; otherwise, keep the previous solution. This procedure terminates when all possible A_{i} and p_{i} combinations are tested. Figure 5.4 shows the flow chart for determining alternatives and diverted fractions in SAMASD.

Figure 5.3 SAMASD Algorithm

Figure 5.4 Determining Alternatives and Diverted Fractions in SAMASD

5.3 Numerical Examples - Two-Lane Highway Work Zone with a Detour

The effects of various parameters on work zone scheduling for two-lane highway and on the preferable alternatives are examined in this section. The baseline numerical values for each variable in this section are defined in Table 5.1. A numerical example sequences and schedules unequal work zones for a $7.5-\mathrm{km}$ maintenance project on a twolane highway with a detour. Table 4.3 shows the hourly traffic distribution on the maintained road. The annual average daily traffic (AADT) on the main road is 15,000 vehicles, as shown in Figure 4.15 for Alternative 2.1. The annual average daily traffic on the detour is 5,000 vehicles, as shown in Table 5.2.

Table 5.1 Inputs for Numerical Example for Two-Lane Highway Work Zones with Detour

Variable	Description	Values
$c_{d 3}$	Maximum discharge rate along detour $L_{d 2}$	$1,300 \mathrm{vph}$
$A A D T_{m}$	Annual average daily traffic on main Road	1,5000
$A A D T_{d}$	Annual average daily traffic on detour	5,000
L_{T}	Project road length	7.5 km
$L_{d l}$	Length of first detour segment	0.5 km
$L_{d 2}$	Length of second detour segment	7.5 km
$L_{d 3}$	Length of third detour segment	0.5 km
L_{t}	Entire Distance of Maintained Road from A to B	7.5 km
$N_{\text {int }}$	Number of intersections along detour	3
n_{a}	Number of crashes per 100 million vehicle hour	$40 \mathrm{acc} / 100 \mathrm{mvh}$
$t_{i n t}$	Average waiting time per intersection	30 sec
V	Average work zone speed	$50 \mathrm{~km} / \mathrm{hr}$
V_{f}	Free flow speed along AB and detour	$80 \mathrm{~km} / \mathrm{hr}$
v	Value of user time	$12 \$ / \mathrm{veh} \cdot \mathrm{hr}$
v_{a}	Average crash cost	$142,000 \$ / \mathrm{crash}$
v_{d}	Average Cost of Idling Time	$800 \$ / \mathrm{hr}$
z_{l}	Fixed setup cost	$1,000 \$ / \mathrm{zone}$
z_{2}	Average maintenance cost per lane•kilometer	80,000
		$\$ / \mathrm{lane} \cdot \mathrm{km}$
z_{3}	Fixed setup time	$2 \mathrm{hr} / \mathrm{zone}$
z_{4}	Average maintenance time per lane•kilometer	$6 \mathrm{hr} / \mathrm{lane} \cdot \mathrm{km}$

Table 5.2 AADT and Hourly Traffic Distribution on Detour (Two-lane Highway)

Hour	Volume (Both Direction)	\% of AADT	\% of Direction3	\% of Direction4	Q_{3} (vph)	Q_{4} (vph)
0	117	2.33%	0.48	0.52	56	61
1	116	2.33%	0.48	0.52	55	61
2	117	2.33%	0.45	0.55	53	64
3	116	2.33%	0.53	0.47	61	55
4	117	2.33%	0.53	0.47	62	55
5	116	2.33%	0.53	0.47	61	55
6	184	3.68%	0.57	0.43	105	79
7	300	6.00%	0.56	0.44	168	132
8	383	7.68%	0.56	0.44	214	169
9	334	6.68%	0.54	0.46	180	154
10	267	5.33%	0.51	0.49	136	131
11	217	4.33%	0.51	0.49	110	107
12	200	4.00%	0.5	0.5	100	100
13	184	3.68%	0.52	0.48	96	88
14	217	4.33%	0.51	0.49	110	107
15	283	5.68%	0.53	0.47	150	133
16	367	7.33%	0.49	0.51	180	187
17	282	5.63%	0.47	0.53	132	150
18	250	5.00%	0.47	0.53	117	133
19	233	4.68%	0.47	0.53	110	123
20	200	4.00%	0.46	0.54	92	108
21	167	3.33%	0.48	0.52	80	87
22	116	2.33%	0.48	0.52	55	61
23	117	2.33%	0.48	0.52	56	61
AADT	$\mathbf{5 , 0 0 0}$	$\mathbf{1 0 0 . 0 0 \%}$	-	-	$\mathbf{2 , 5 3 9}$	$\mathbf{2 , 4 6 1}$

Figure 5.5 shows the Minimized Total Cost and project starting time for
Alternatives 2.1, $2.2(p=0.3,0.6,0.9), 2.3(p=1)$ and 2.4. The best project starting times are 11:00, 11:00, and 9:00, respectively, for Alternatives 2.1, 2.3, and 2.4; and 20:00 for Alternative $2.2(p=0.3,0.6,0.9)$. Based on the baseline values in Table 5.1, the cost of Alternative 2.3 is minimized by starting the work at 11:00, as shown in Table 5.3. Its minimized total cost is $\$ 614,073 /$ project, with three work zones whose optimized lengths of $2.65,2.22$, and 2.62 km add up to 7.5 km , and whose idling time is 0 .

Figure 5.5 Minimized Total Cost vs. Project Starting Time (Two-lane Highway Work Zones)

Table 5.3 Optimized Results for Numerical Example, Project Starting Time: 11:00, $v_{d}=\$ 800 / \mathrm{hr}$, Alternative 2.3

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	2.65	17.92	11.00	4.92	-	216,854
2	2.22	15.34	4.92	20.26	0.00	182,824
3	2.62	17.74	20.26	14.00	0.00	214,395
Total	7.50	51.00			0.00	614,073
Maintenance cost					603,000	
Queuing delay cost				0		
Moving delay cost				11,021		
Idling cost				0		
Crash Cost				52		
Total cost				614,073		
Total cost/project-km (\$/lane-km)			81,876			

Figure 5.6 Minimized Total Cost vs. Detour AADT

Figure 5.6 shows that Alternatives 2.1, 2.2, and 2.3 are on the lowest cost envelope. The first of two thresholds with respect to Annual Average Daily Traffic (AADT) occurs at 25,000 vehicles per day, beyond which Alternative $2.2(p=0.3)$ becomes preferable to Alternative 2.3; beyond 30,000 vehicles per day Alternative 2.1 $(p=0)$ becomes preferable to Alternative $2.2(p=0.3)$. A sharp increase in cost occurs for all alternatives except 2.1 since the detour queuing delays increase drastically when the diverted flow plus original detour flow exceed the detour capacity. Because there is no detour in Alternative 2.1, its minimized total cost is not sensitive to detour AADT. This threshold analysis is similar to Figure 3.10, which indicates that Alternatives 2.4, 2.3, 2.2, and 2.1 become preferable as detour length increases. This occurs because higher detour traffic (Figure 5.6) or longer detours (Figure 3.10) increase the time that diverted motorists need to return to the original main road. If the motorists must spend much more time on the detour, little or no diversion is desirable.

5.4 Numerical Examples - Four-Lane Highway Work Zone with a Detour

The effects of various parameters on work zone scheduling for four-lane highway and on the preferable alternatives are examined in this section. The baseline numerical values for each variable are the same as in Table 5.1 except AADT on main road and detour. A numerical example sequences unequal work zones for a $7.5-\mathrm{km}$ maintenance project on a four-lane highway with a detour. Table 4.8 shows the hourly traffic distribution on the maintained road. The annual average daily traffic (AADT) on the main road is 35,000 vehicles, as shown in Figure 4.19 for Alternative 4.1. The annual average daily traffic on the detour is 10,000 vehicles per day and the hourly traffic distribution is shown in Table 5.4.

Figure 5.7 shows the minimized total cost and project starting time for Alternatives 4.1, $4.2(p=0.3,0.6,0.9), 4.3(p=1)$ and 4.4. The best project starting times are 22:00, 12:00, 16:00, and 10:00, respectively, for Alternatives $4.2(p=0.3), 4.2(p=0.6)$, $4.2(p=0.9)$ and 4.3; and 21:00 for Alternatives 4.1 and 4.4. Based on the baseline values, the cost of Alternative 4.1 is minimized by starting the work at 21:00. Its minimized total cost is $\$ 612,908 /$ project, with five work zones whose optimized lengths of $1.52,1.35$, $1.80,0.91$, and 1.90 km add up to 7.5 km , and whose idling time is 2.03 hours, as shown in Table 4.8.

Table 5.4 AADT and Hourly Traffic Distribution on Detour (Four-lane Highway)

Hour	Volume (Both Direction)	\% of AADT	\% of Direction1	\% of Direction2	Q_{3} (vph)	\boldsymbol{Q}_{4} (vph)
0	233	2.33%	0.48	0.52	112	121
1	233	2.33%	0.48	0.52	112	121
2	233	2.33%	0.45	0.55	105	128
3	233	2.33%	0.53	0.47	123	110
4	233	2.33%	0.53	0.47	123	110
5	233	2.33%	0.53	0.47	123	110
6	368	3.68%	0.57	0.43	210	158
7	600	6.00%	0.56	0.44	336	264
8	768	7.68%	0.56	0.44	430	338
9	668	6.68%	0.54	0.46	361	307
10	533	5.33%	0.51	0.49	272	261
11	433	4.33%	0.51	0.49	221	212
12	400	4.00%	0.50	0.50	200	200
13	368	3.68%	0.52	0.48	191	177
14	433	4.33%	0.51	0.49	221	212
15	568	5.68%	0.53	0.47	301	267
16	733	7.33%	0.49	0.51	359	374
17	563	5.63%	0.47	0.53	265	298
18	500	5.00%	0.47	0.53	235	265
19	468	4.68%	0.47	0.53	220	248
20	400	4.00%	0.46	0.54	184	216
21	333	3.33%	0.48	0.52	160	173
22	233	2.33%	0.48	0.52	112	121
23	233	2.33%	0.48	0.52	112	121
AADT	$\mathbf{1 0 , 0 0 0}$	$\mathbf{1 0 0 . 0 0 \%}$	-	-	$\mathbf{5 , 0 8 8}$	$\mathbf{4 , 9 1 2}$

Figure 5.7 Minimized Total Cost vs. Project Starting Time (Four-lane Highway Work Zones)

Figure 5.8 shows the relation between the minimized total cost and the detour AADT for two project starting times: (a) 11:00 and (b) 21:00. In (a) at 11:00 the minimized total costs of all alternatives are much closer. In (b) Alternative 4.1 has the lowest minimized total cost. The minimized total costs of Alternatives 4.1 and 4.4 are not sensitive to detour AADT because these two alternatives do not consider any detour. There is no detour AADT threshold in Figures 5.8(a) and (b) because higher detour AADT and higher diverted flow increase the queuing delays on the detour quickly so that no threshold with Alternative 4.1 occurs.

Figure 5.9 shows the relation between the minimized total cost and the main road AADT when the project starting time is 11:00. There is one threshold and Alternatives 4.1 and $4.2(p=0.3)$ successively define the lowest cost envelope. The threshold occurs at 37,000 vehicles per day, beyond which Alternative $4.2(p=0.3)$ becomes preferable to Alternative 4.1. Alternatives $4.2(p=0.9)$ and 4.3, which have higher diverted fraction, have sharp increases in minimized total costs due to sharp increases in detour queuing delay and never become preferable alternatives. In Chapter 3, based on steady traffic inflows and without considering detour queuing delay, Figure 3.18 indicates that a higher diverted fraction (Alternative 4.3) is preferable when Q_{l} is lower than 800 vph. However, compared to Figure 3.18, alternatives with higher diverted fraction never become preferable because the detour queuing delay is considered here.

Figure 5.8 Minimized Total Cost vs. Detour AADT (a) Project Starting Time: 11:00 (b) Project Starting Time: 21:00

Figure 5.9 Minimized Total Cost vs. Main Road AADT (Project Starting Time: 11:00)

Tables 5.5(a) and (b) show the optimized solutions for Alternatives 4.1 and 4.2 ($p=0.3$). Alternative 4.2 ($p=0.3$) has lower minimized total cost than Alternative 4.1 as the main road AADT is 40,000 vehicles per day. Compared to Table 5.5(b), Table 5.5(a) indicates that, for a higher main road AADT and without a detour, the optimized number of zones increases to avoid the moving delay and the optimized idling time increases to avoid queuing delay along work zones. The optimized solution of Alternative $4.2(p=0.3)$ in Table 5.5(b) shows fewer zones and no idling time decrease the maintenance cost and idling cost and the solution reaches the lowest minimized total cost for all alternatives. In such a case, the considerably lower agency cost, including maintenance cost and idling cost, for Alternative $4.2(p=0.3)$ is the key factor in reaching the lowest minimized total cost, even if it has higher user cost than Alternative 4.1.

Table 5.5(a) Optimized Results for Numerical Example, Main Road AADT=40,000 veh/day, Project Starting Time: 11:00, Alternative 4.1

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	0.53	5.20	11.00	16.20	-	44,003
2	2.06	14.38	16.91	7.29	0.71	168,469
3	0.71	6.28	9.91	16.19	2.62	60,685
4	2.06	14.38	16.91	7.29	0.72	168,477
5	0.71	6.28	9.91	16.19	2.62	60,685
6	1.41	10.48	16.91	3.39	0.72	115,538
Total	7.50	57.00			7.39	617,857
Maintenance cost					606,000	
Queuing delay cost					633	
Moving delay cost					5,286	
Idling cost					5,910	
Crash Cost					617,857	
Total cost					82,381	
Total cost/project-km (\$/lane-km)						

Table 5.5(b) Optimized Results for Numerical Example, Main Road AADT=40,000 veh/day, Project Starting Time: 11:00, Alternative 4.2, $\boldsymbol{p = 0 . 3}$

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	2.80	18.82	11.00	5.82	-	229,912
2	2.11	14.68	5.82	20.50	0.00	174,841
3	2.58	17.50	20.50	14.00	0.00	212,120
Total	7.50	51.00			0.00	616,873
Maintenance cost					603,000	
Queuing delay cost					52	
Moving delay cost					13,756	
Idling cost				0		
Crash Cost					616,873	
Total cost				82,250		
Total cost/project-km (\$/lane-km)						

5.5 Numerical Examples - Mixed Alternatives

In Figure 5.3, the minimized total costs for different detour AADT can be obtained through threshold analysis. Here Figure 5.3 is modified by adding a curve which represents the minimized total costs for mixed alternatives. The modified result is shown in Figure 5.10.

Figure 5.10 Minimized Total Cost vs. Detour AADT

Figure 5.10 shows that in most situations mixed alternatives can yield much lower minimized total costs than the envelope, on which Alternatives 2.1, 2.2, and 2.3 are included in Figure 5.3, when the detour AADT increases.

When the detour AADT is at its baseline value, 5,000 vehicles per day, Alternative 2.3 has the lowest minimized total cost at $\$ 614,073 /$ project, and no further
improvement is obtainable from mixed alternatives. Tables 5.6 (a) and (b) show that the optimized results for Alternative 2.3 and mixed alternatives at 11:00 has the same minimized total cost but the solutions are slightly different.

When the detour AADT increases to 20,000 vehicles per day, Alternative 2.3 has the lowest minimized total cost at $\$ 622,630 /$ project in Figure 5.3. However, one lower minimized total cost, at $\$ 617,674 /$ project, is found in Figure 5.10 by considering mixed alternatives. Tables 5.7 (a) and (b) show the optimized results for Alternative 2.3 and the mixed alternatives with an 11:00 start. Table 5.7(b) indicates that only 50% of flow in Direction 1 can be diverted to the detour during daytime, i.e. in zone 1 ; full diversion is applied at other zones when the detour AADT reaches 20,000 vehicles per day

Tables 5.8(a), (b), and (c) indicate the optimized results for mixed alternatives when the detour AADT reaches $25,000,30,000$, and 35,000 vehicles per day, respectively. The minimized total costs with mixed alternatives are also lower than the envelope with Alternative $2.2(p=0.3)$ and Alternative 2.1. The differences of total costs are $\$ 4,867, \$ 4,719$, and $\$ 4,436$, respectively. Tables 5.7 and 5.8 show that partial diversion or no diversion is applied during daytime, i.e., in zones 3 and 5 in Table 5.8(b); full diversion is applied during nighttime, i.e., in zones 2,4, and 6 in Table 5.8(b).

From Figure 5.10 and Tables 5.6 to 5.8 , we can find that when detour AADT is low, e.g., 5,000 vehicles per day, the minimized total cost can be obtained by the uniform alternatives applied for an entire project. As detour AADT increases, mixed alternatives that integrate no diversion, partial diversion, or full diversion, in different zones can yield lower minimized total cost than uniform alternatives. Thus, an appropriate traffic management plan should be developed based on different traffic inflows.

Table 5.6(a) Optimized Results for Numerical Example, Detour AADT=5,000 veh/day, Project Starting Time: 11:00, Alternative 2.3

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	2.65	17.92	11.00	4.92	-	216,854
2	2.22	15.34	4.92	20.26	0.00	182,824
3	2.62	17.74	20.26	14.00	0.00	214,395
Total	7.50	51.00			0.00	614,073
Maintenance cost					603,000	
Queuing delay cost					0	
Moving delay cost					11,021	
Idling cost					0	
Crash Cost					614,073	
Total cost				81,876		
Total cost/project-km (\$/lane-km)						

Table 5.6(b) Optimized Results for Numerical Example, Detour AADT=5,000 veh/day, Project Starting Time: 11:00, Mixed Alternatives

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Prefered Zone Alt.	Prefered Diverted Fraction	Total Cost $(\$ /$ zone $)$
1	2.65	17.91	11.00	4.91	-	23	1.00
2	2.23	15.36	4.91	20.27	0.00	23	1.00
3	2.62	17.73	20.27	14.00	0.00	23	183,125
Total	7.50	51.00			0.00		
Maintenance cost						614,044	
Queuing delay cost						603,000	
Moving delay cost						11,021	
Idling cost						0	
Crash Cost						614,073	
Total cost						81,876	
Total cost/project-km (\$/lane-km)							

Table 5.7(a) Optimized Results for Numerical Example, Detour AADT=20,000 veh/day, Project Starting Time: 11:00, Alternative 2.3

Zone No.Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	0.50	5.00	11.00	16.00	-	42,043
2	0.86	7.16	16.79	23.95	0.79	71,743
3	1.11	8.66	23.95	8.61	0.00	91,133
4	0.89	7.34	8.61	15.95	0.00	74,024
5	0.86	7.16	16.79	23.95	0.84	71,785
6	1.11	8.66	23.95	8.61	0.00	91,135
7	0.89	7.34	8.61	15.95	0.00	74,023
8	0.47	4.82	16.79	21.61	0.84	40,278
9	0.81	6.86	21.61	4.47	0.00	66,466
Total	7.50	63.00			2.47	622,630
Maintenance cost					609,000	
Queuing delay cost					180	
Moving delay cost					11,421	
Idling cost					1,974	
Crash Cost					622,630	
Total cost					83,017	
Total cost/project-km (\$/lane-km)						

Table 5.7(b) Optimized Results for Numerical Example, Detour AADT=20,000 veh/day, Project Starting Time: 11:00, Mixed Alternatives

Zone No.	Optimized length (km)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Prefered Zone Alt.	Prefered Diverted Fraction	Total Cost $(\$ /$ zone $)$
1	0.65	5.93	11.00	16.93	-	22	0.50	54,965
2	2.34	16.01	16.93	8.94	0.00	23	1.00	190,984
3	2.10	14.57	8.94	23.51	0.00	23	1.00	173,720
4	2.41	16.49	23.51	16.00	0.00	23	1.00	198,005
Total	7.50	53.00			0.00			617,674
Maintenance cost						604,000		
Queuing delay cost						2,113		
Moving delay cost						11,497		
Idling cost						0		
Crash Cost						617,674		
Total cost						82,357		

Table 5.8(a) Optimized Results for Numerical Example, Detour AADT=25,000 veh/day, Project Starting Time: 11:00, Mixed Alternatives

$\begin{aligned} & \text { Zone } \\ & \text { No. } \end{aligned}$	Optimized length (km)	Duration (hr)	$\begin{gathered} \text { Starting } \\ \text { time } \\ (0-23.99) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { time } \\ (0 \sim 23.99) \end{gathered}$	Idling time (hr)	Prefered Alt.	Prefered Diverted Fraction	Total Cost (\$/zone)
1	0.70	6.18	11.00	17.18	-	22	0.30	58,602
2	1.66	11.94	17.18	5.13	0.00	23	1.00	135,464
3	1.31	9.84	5.13	14.97	0.00	23	1.00	108,139
4	3.35	22.07	16.98	15.05	2.00	23	1.00	275,796
5	0.49	4.95	15.05	20.00	0.00	21	0.00	42,143
Total	7.50	55.00			2.00			620,144
Maintenance cost								605,000
Queuing delay cost								2,737
Moving delay cost								10,741
Idling cost								1,602
Crash Cost								64
Total cost								620,144
Total cost/project-km (\$/lane-km)								82,686

Table 5.8(b) Optimized Results for Numerical Example, Detour AADT=30,000 veh/day, Project Starting Time: 11:00, Mixed Alternatives

$\begin{aligned} & \text { Zone } \\ & \text { No. } \end{aligned}$	Optimized length (km)	Duration (hr)	$\begin{gathered} \text { Starting } \\ \text { time } \\ (0-23.99) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { time } \\ (0 \sim 23.99) \\ \hline \end{gathered}$	Idling time (hr)	Prefered Zone Alt.	Prefered Diverted Fraction	Total Cost (\$/zone)
1	0.50	4.99	11.00	15.99	-	21	0.00	41,729
2	2.16	14.95	17.01	7.97	1.02	23	1.00	177,289
3	0.83	6.97	9.03	15.99	1.06	22	0.30	70,235
4	2.31	15.85	17.01	8.86	1.01	23	1.00	189,905
5	0.85	7.09	8.86	15.94	0.00	22	0.30	71,171
6	0.86	7.15	17.00	0.16	1.06	23	1.00	71,826
Total	7.50	55.00			2.00			620,144
Maintenance cost								606,000
Queuing delay cost								3,803
Moving delay cost								8,966
Idling cost								3,326
Crash Cost								60
Total cost								622,155
Total cost/project-km (\$/lane-km)								82,954

Table 5.8(c) Optimized Results for Numerical Example, Detour AADT=35,000 veh/day, Project Starting Time: 11:00, Mixed Alternatives

$\begin{aligned} & \text { Zone } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Optimized } \\ \text { length } \\ (\mathrm{km}) \\ \hline \end{gathered}$	Duration (hr)	$\begin{gathered} \text { Starting } \\ \text { time } \\ (0-23.99) \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { time } \\ (0 \sim 23.99) \end{gathered}$	Idling time (hr)	Prefered Zone Alt.	Prefered Diverted Fraction	Total Cost (\$/zone)
1	0.50	4.99	11.00	15.99	-	21	0.00	41,741
2	2.01	14.05	17.94	7.99	1.94	23	1.00	165,763
3	0.67	6.01	9.97	15.98	1.98	21	0.00	57,439
4	2.03	14.17	17.92	8.09	1.94	23	1.00	167,357
5	0.66	5.95	8.09	14.03	0.00	22	0.40	55,469
6	0.32	3.91	14.03	17.95	0.00	21	0.00	27,516
7	1.32	9.91	17.95	3.86	0.00	23	1.00	108,026
Total	7.50	59.00			5.86			623,313
Maintenance cost								607,000
Queuing delay cost								3,827
Moving delay cost								7,741
Idling cost								4,690
Crash Cost								55
Total cost								623,313
Total cost/project-km (\$/lane-km)								83,108

Chapter VI Work Zone Optimization with Multiple Detour Paths

In Chapter 5 the SAMASD algorithm for selecting alternatives for various zones in a maintenance project was developed to optimize work zone scheduling and diverted fractions while considering a single detour. In Chapter 6, work zone optimization models for a road network with multiple detour paths and the SAMAMD (Simulated Annealing for Mixed Alternatives with Multiple Detour paths) algorithm are developed. For analyzing traffic diversion through multiple detour paths in a road network, the SAUAMD (Simulated Annealing algorithm for Uniform Alternatives with Multiple Detour paths) and the SAMAMD algorithms are used to optimize work zone lengths and schedule the resurfacing work. Simulation analyses based on CORSIM are used not only to estimate delay cost, but also to evaluate the effectiveness of optimization models. In a case study, a comparison of the results from optimization and simulation models indicates that they are consistent. The optimization models do significantly reduce total cost, including user cost and maintenance cost.

6.1 Types of Multiple Detour Paths

In a road network with multiple detour paths, the diverted flow from Direction 1 can be assigned to more than one detour. Figure 6.1 shows several types of multiple detour paths. A prototype of a road network with multiple detour paths is shown in Figure 6.1(a). Four diverted fractions, p, q, r, k, occur in this network. The flow $p Q_{l}$ is diverted toward segments $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{F}$ while the flow $q Q_{l}$ is diverted along segments $\mathrm{A} \rightarrow \mathrm{G} \rightarrow$ $\mathrm{H} \rightarrow \mathrm{B}$. The remaining flow (1-p-q) Q_{1} goes through work zone toward segment AE. Then the diverted flow $p Q_{1}$ is separated into two flows: $p k Q_{1}$ along $\mathrm{F} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ and $p(1-k) Q_{1}$
along $\mathrm{F} \rightarrow \mathrm{E} \rightarrow \mathrm{B}$. The diverted flow (1-p-q) Q_{l} is also separated into two flows: $r(1-p-$ q) Q_{1} along $\mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ and $(1-r)(1-p-q) Q_{1}$ along $\mathrm{E} \rightarrow \mathrm{B}$. The flow volumes on each segment are shown in Figure 6.1(a).

However, some road networks may be simpler than Figure 6.1(a). Figures 6.1(b) to (f) show five special cases simplified from Figure 6.1(a). These five network configurations are as follows:

1. Figure 6.1(b): Maintained Segment: AB, Diverted Fraction: p, q, No segment $\mathrm{EF}, k=0, r=0$.

Two separate detours are available for maintenance on segment AB. The flow $p Q_{1}$ is diverted along segments $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ while the flow $q Q_{1}$ is diverted along segments $\mathrm{A} \rightarrow \mathrm{G} \rightarrow \mathrm{H} \rightarrow \mathrm{B}$.
2. Figure 6.1(c): Maintained Segment: AE, Diverted Fraction: p, k, No segments $\mathrm{A} \rightarrow \mathrm{G} \rightarrow \mathrm{H} \rightarrow \mathrm{B}, q=0, r=0$.

The diverted flow $p Q_{l}$ can be considered as two separate flows: $p k Q_{l}$ along segments $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ and $p(1-k) Q_{1}$ along segments $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{F} \rightarrow \mathrm{E}$.
3. Figure 6.1(d): Maintained Segment: EB, Diverted Fraction: p, r, No segments
$\mathrm{A} \rightarrow \mathrm{G} \rightarrow \mathrm{H} \rightarrow \mathrm{B}, q=0, k=0$.
The flow $p Q_{l}$ is diverted along segments $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ while the flow $r(l-p) Q_{l}$ is diverted along segments $\mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$.
4. Figure 6.1(e): Maintained Segment: AE, Diverted Fraction: $p, q, k, r=0$.

The maintained segment is AE. No vehicles passing through AE will choose a longer trip along $\mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ instead of $\mathrm{E} \rightarrow \mathrm{B}$.

(a) Maintained Segment: AB, Diverted Fraction: p, q, r, k

(b) Maintained Segment: AB, Diverted Fraction: p, q

(c) Maintained Segment: AE, Diverted Fraction: p, k

Figure 6.1 Types of Multiple Detour Paths for Work Zones

(d) Maintained Segment: EB, Diverted Fraction: p, r

(e) Maintained Segment: AE, Diverted Fraction: p, q, k

(f) Maintained Segment: EB, Diverted Fraction: p, q, r

Figure 6.1 Types of Multiple Detour Paths for Work Zones (continued)
5. Figure 6.1(f): Maintained Segment: EB, Diverted Fraction: $p, q, r, k=0$.

The maintained segment is EB. No vehicles diverted to detour $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{F}$ will return to work zones along EB.

6.2 Optimization Models for Work Zones with Multiple Detour Paths

The model formulation for a road network with multiple detour paths as shown in Figure 6.1(a) is developed in this section. One multiple detour case study will be analyzed and a simulation model is developed to evaluate the work zone optimization models. The road network analyzed in this case study includes I-95 and US 1, from MD 32, MD 175, to MD 100. This network is consistent with Figure 6.1(c). The model formulation for Figure 6.1(c) can be derived by setting $q=0$ and $r=0$ in the model derived below for Figure 6.1(a).

6.2.1 Extension of Optimization Model for Multiple-lane Highway

Although the optimization models in Section 4.1.2 (Alternative 4.1) and Section 5.1.3 (Alternatives 4.2, 4.3, and 4.4) are developed for four-lane highway work zones, the models can be extended to analyze work zones on multiple-lane highways with six and eight lanes. Some parameters in Figure 4.3, namely c_{0}, the maximum discharge rate without the work zone, and c_{w}, the maximum discharge rate along the work zone, are redefined here. c_{0} is replaced with $n_{l} c_{l}$, where n_{l} is the number of lanes in Direction 1 and c_{l} is the maximum discharge rate (without a work zone) for one lane; c_{w} is replaced with $n_{r l} c_{w r l}$, where $n_{r l}$ is the number of the remaining lanes along a work zone and $c_{w r l}$ is the maximum lane discharge rate along a work zone. c_{l} (maximum discharge rate without a
work zone for one lane), $c_{w r l}$ (maximum lane discharge rate along a work zone), V_{w} (average work zone speed), and V_{a} (average approaching speed) will be given higher values for the IS-95 freeway case in this chapter instead of the baseline values in Tables 3.1 and 3.5 for four-lane rural highway work zones.

6.2.2 Model Formulation

According to the definitions of four alternatives for four-lane highway work zones in Section 3.2, we can define Alternative 8.1 as having no detour and one lane closed for $Q_{1}^{i j}$ traffic $(p=0)$ for eight-lane highway work zones, Alternative 8.2 as having $(1-p-q) Q_{1}^{i j}$ traffic through the detour and one lane closed, and Alternative 8.3 as having all $Q_{1}^{i j}$ traffic through the detour and allowing work on all lanes in Direction $1(p+q=1)$. Because Alternatives 8.1 and 8.3 are special cases of Alternative 8.2 with $p+q=0$ and 1 , only the model of Alternative 8.2 with multiple detour paths needs to be derived below.

1. Queuing Delay Cost

Figure 6.1(a) shows that the fraction $p+q$ of the flow $Q_{I}^{i j}$ in Direction 1 is diverted to the alternate routes. The user queuing delay cost of the remaining flow $(1-p-q) Q_{l}^{i j}$ in Direction 1 for work zone $i, C_{q(1-p-q), i}^{82}$, is the area C in Figure 4.3 multiplied by v but with $(1-p-q) Q_{l}^{i j}$ substituted for $Q_{1}^{i j}$, with $n_{l} c_{l}$ substituted for c_{0}, and with $n_{r l} c_{w r l}$ substituted for c_{w}, where n_{l} is 4 (4 lanes in Direction 1) in a eight-lane highway and $n_{r l}$ is 3 when one lane is closed. The user queuing delay cost of the flow $(1-p-q) Q_{1}^{i j}$ is:

$$
\begin{equation*}
C_{q(1-p-q), i}^{82}=(\text { area of } C) v \tag{6.1}
\end{equation*}
$$

The diverted flow $p Q_{l}$ can be considered as two separate flows: $p k Q_{1}^{i j}$ along A $\rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ and $p(l-k) Q_{1}^{i j}$ along $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{F} \rightarrow \mathrm{E}$. The detour queuing delay costs for $p k Q_{1}^{i j}$ and $p(1-k) Q_{1}^{i j}$ are considered together. The possible detour queuing delay cost of the diverted flow $p Q_{1}^{i j}$ and $Q_{3}^{i j}$ in Direction 3 along CD for zone i, denoted $C_{q d C D, i}^{82}$, is the area C in Figure 5.1 multiplied by v.

$$
\begin{equation*}
C_{q d C D, i}^{82}=(\text { area of } C) v \tag{6.2}
\end{equation*}
$$

The queuing delay costs for $p k Q_{I}^{i j}$ and $p(1-k) Q_{I}^{i j}$ due to intersection signal or stop delay along detour are considered separately. The user delay cost of the diverted flow $p k Q_{1}^{i j}$ from Direction 1 along the detour $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ due to intersection signal or stop delay, denoted as $C_{\text {int }, p k, i}^{82}$, is:

$$
\begin{equation*}
C_{i n t, p k, i}^{82}=\sum_{j}^{n} p k Q_{l}^{i j} D_{i} N_{i n t, C D} \frac{t_{\text {int }}}{3600} v \tag{6.3}
\end{equation*}
$$

where $N_{\text {int }, C D}$ is the number of intersections along CD.
The user delay cost of the diverted flow $p(1-k) Q_{l}^{i j}$ from Direction 1 along the detour $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{F} \rightarrow \mathrm{E}$ due to intersection signal or stop delay, denoted as $C_{\text {int, } p(1-k), i}^{82}$, is:

$$
\begin{equation*}
C_{i n t, p(1-k), i}^{82}=\sum_{j}^{n} p(1-k) Q_{l}^{i j} D_{i} N_{i n t, C F} \frac{t_{\text {int }}}{3600} v \tag{6.4}
\end{equation*}
$$

where $N_{\text {int }, \text { CF }}$ is the number of intersections along CF.

The remaining flow (l-p-q) Q_{l} can be considered as two separate flows:
$r(1-p-q) Q_{I}^{i j}$ along $\mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ (on the detour) and $(1-r)(1-p-q) Q_{I}^{i j}$ along $\mathrm{E} \rightarrow \mathrm{B}$ (on the main road). The detour queuing delay costs for $r(1-p-q) Q_{1}^{i j}$ are
considered here. The possible detour queuing delay cost of the diverted flow $r(1-p-q) Q_{1}^{i j}$ and $p k Q_{1}^{i j}+Q_{3}^{i j}$ in Direction 3 along FD for zone i, denoted $C_{q d F D, i}^{82}$, is the area C in Figure 5.1 multiplied by v but with $r(1-p-q) Q_{I}^{i j}$ substituted for $p Q_{1}^{i j}$ and with $p k Q_{I}^{i j}+Q_{3}^{i j}$ substituted for $Q_{3}^{i j}$.

$$
\begin{equation*}
C_{q d F D, i}^{82}=(\text { area of } C) v \tag{6.5}
\end{equation*}
$$

The queuing delay cost of the diverted flow $r(1-p-q) Q_{1}^{i j}$ from Direction 1
along the detour $\mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ due to intersection signal or stop delay, denoted as $C_{\text {int }, \text { rl-p-q), },}^{82}$, is:

$$
\begin{equation*}
C_{\text {int,r }(l-p-q), i}^{82}=\sum_{j}^{n} r(1-p-q) Q_{l}^{i j} D_{i} N_{\text {int }, F D} \frac{t_{\text {int }}}{3600} v \tag{6.6}
\end{equation*}
$$

where $N_{\text {int }, F D}$ is the number of intersections along FD.
The other diverted flow $q Q_{l}$ may also yield possible detour queuing delay along $\mathrm{A} \rightarrow \mathrm{G} \rightarrow \mathrm{H} \rightarrow \mathrm{B}$. The possible detour queuing delay cost of the diverted flow $q Q_{1}^{i j}$ and $Q_{5}^{i j}$ in Direction 5 along GH for zone i, denoted $C_{q d G H, i}^{82}$, is the area C in Figure 5.1 multiplied by v but with $q Q_{I}^{i j}$ substituted for $p Q_{I}^{i j}$ and with $Q_{5}^{i j}$ substituted for $Q_{3}^{i j}$. (Direction 5 is defined as the direction along GH and the original flow along GH is $Q_{5}^{i j}$.)

$$
\begin{equation*}
C_{q d G H, i}^{82}=(\text { area of } C) v \tag{6.7}
\end{equation*}
$$

The combined queuing delay cost for the maintained road AE and the detours, $C_{q i}^{82}$, can be derived as:

$$
\begin{equation*}
C_{q i}^{82}=C_{q(1-p-q), i}^{82}+C_{q d C D, i}^{82}+C_{q d F D, i}^{82}+C_{q d G H, i}^{82}+C_{i n t, p k, i}^{82}+C_{i n t, p(1-k), i}^{82}++C_{i n t, r(1-p-q), i}^{82} \tag{6.8}
\end{equation*}
$$

2. Moving Delay Cost

The moving delay cost of the traffic flows $(1-p-q) Q_{1}^{i j}$ in work zone i, denoted $C_{v(1-p-q), i}^{82}$, is:

$$
\begin{array}{ll}
C_{v(1-p-q), i}^{82}=\left(\frac{L_{i}}{V_{w}}-\frac{L_{i}}{V_{a}}\right)(1-p-q) Q_{l}^{i j} D_{i j} v & \text { when }(1-p-q) Q_{l}^{i j} \leq n_{r l} c_{w r l} \\
C_{v(1-p-q), i}^{82}=\left(\frac{L_{i}}{V_{w}}-\frac{L_{i}}{V_{a}}\right) n_{r l} c_{w r l} D_{i j} v & \text { when }(1-p-q) Q_{1}^{i j}>n_{r l} c_{w r l} \tag{6.9b}
\end{array}
$$

The moving delay costs for $p k Q_{l}^{i j}$ and $p(1-k) Q_{l}^{i j}$ along the detour are considered separately. The moving delay cost of the diverted flow $p k Q_{1}^{i j}$ from Direction 1, denoted as $C_{v p k, i}^{82}$, is:

$$
\begin{equation*}
C_{v p k, i}^{82}=\sum_{j}^{n} p k Q_{l}^{i j} D_{i}\left[\frac{L_{A C}+L_{D B}}{V_{0}}+\frac{L_{C F}}{V_{d, C F}^{* 3}}+\frac{L_{F D}}{V_{d, F D}^{* 3}}-\frac{L_{A B}}{V_{0}}\right] v \tag{6.10}
\end{equation*}
$$

where $L_{A C}, L_{D B}$, and $L_{C D}$ are the lengths of segments AC, DB , and CD along the detour and $L_{A B}$ is the length of AB along the main road. $V_{d, C F}^{* 3}$ is the detour speed affected by $p Q_{l}^{i j}$ along CF. $V_{d, F D}^{* 3}$ is the detour speed affected by $(p k+r-r p-r q) Q_{l}^{i j}$ along FD.

The moving delay cost of the diverted flow $p(1-k) Q_{l}^{i j}$ from Direction 1, denoted as $C_{v p(1-k), i}^{82}$, is:

$$
\begin{equation*}
C_{v p(1-k), i}^{82}=\sum_{j}^{n} p(l-k) Q_{l}^{i j} D_{i}\left[\frac{L_{A C}+L_{F E}}{V_{0}}+\frac{L_{C F}}{V_{d, C F}^{* 3}}-\frac{L_{A E}}{V_{0}}\right] v \tag{6.11}
\end{equation*}
$$

where $L_{F E}$ and $L_{C F}$ are the lengths of segments FE and CF along the detour and $L_{A E}$ is the length of AE along the main road.

The moving delay cost of the diverted flow $r(1-p-q) Q_{1}^{i j}$ from Direction 1, denoted as $C_{v r(1-p-q), i}^{82}$, is:

$$
\begin{equation*}
C_{v r(l-p-q), i}^{82}=\sum_{j}^{n} r(l-p-q) Q_{l}^{i j} D_{i}\left[\frac{L_{E F}+L_{D B}}{V_{0}}+\frac{L_{F D}}{V_{d, F D}^{* 3}}-\frac{L_{E B}}{V_{0}}\right] v \tag{6.12}
\end{equation*}
$$

where $L_{E F}$ is the length of segment EF along the detour and $L_{E B}$ is the length of EB along the main road.

The moving delay cost of the diverted flow $q Q_{1}^{i j}$ from Direction 1, denoted as $C_{v q, i}^{82}$, is:

$$
\begin{equation*}
C_{v q, i}^{82}=\sum_{j}^{n} q Q_{l}^{i j} D_{i}\left[\frac{L_{A G}+L_{H B}}{V_{0}}+\frac{L_{G H}}{V_{d, G H}^{* 5}}-\frac{L_{A B}}{V_{0}}\right] v \tag{6.13}
\end{equation*}
$$

where $L_{A G}$ and $L_{H B}$ are the lengths of segments AG and HB along the detour. $V_{d, G H}^{* 5}$ is the detour speed affected by $q Q_{1}^{i j}$ along GH in Direction 5.

The moving delay cost of the original flow on the detour along $\mathrm{CD}, Q_{3}^{i j}$, as affected by the $p Q_{1}^{i j}$ and $r(1-p-q) Q_{I}^{i j}$, denoted as $C_{v 3, i}^{82}$, is:

$$
\begin{equation*}
C_{v 3, i}^{82}=\sum_{j}^{n} Q_{3}^{i j} D_{i}\left(\frac{L_{C F}}{V_{d, C F}^{* 3}}+\frac{L_{F D}}{V_{d, F D}^{* 3}}-\frac{L_{C D}}{V_{d 0}}\right) v \tag{6.14}
\end{equation*}
$$

The moving delay cost of the original flow on the detour along $\mathrm{GH}, Q_{5}^{i j}$, as
affected by the $q Q_{1}^{i j}$, denoted as $C_{v 5, i}^{82}$, is:

$$
\begin{equation*}
C_{v s, i}^{82}=\sum_{j}^{n} Q_{5}^{i j} D_{i}\left(\frac{L_{G H}}{V_{d, G H}^{* j}}-\frac{L_{G H}}{V_{d 0}}\right) v \tag{6.15}
\end{equation*}
$$

The combined moving delay cost for the maintained road AE and the detour $C_{v i}^{42}$ can be derived as:

$$
\begin{equation*}
C_{v i}^{82}=C_{v(1-p), i}^{82}+C_{v p k, i}^{82}+C_{v p(1-k), i}^{82}+C_{v r(l-p-q), i}^{82}+C_{v q, i}^{82}+C_{v 3, i}^{82}+C_{v 5, i}^{82} \tag{6.16}
\end{equation*}
$$

3. Idling Cost

The idling cost for zone $i C_{I i}^{82}$ is:

$$
\begin{equation*}
C_{I i}^{82}=v_{d} \Delta t_{i} \tag{6.17}
\end{equation*}
$$

4. Crash Cost

The crash cost for zone $i, C_{a i}^{82}$, is formulated as:

$$
\begin{equation*}
C_{a i}^{82}=\frac{\left(C_{q i}^{82}+C_{v i}^{82}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{6.18}
\end{equation*}
$$

5. Maintenance Cost

The maintenance cost for zone $i, C_{m i}^{82}$, is $z_{l}+z_{2} L_{i}$. Then the total cost for zone i, $C_{\text {ti }}^{82}$, is:

$$
\begin{equation*}
C_{t i}^{82}=\left(z_{l}+z_{2} L_{i}\right)+C_{q i}^{82}+C_{v i}^{82}+v_{d} \Delta t_{i}+\frac{\left(C_{q i}^{82}+C_{v i}^{82}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{6.19}
\end{equation*}
$$

6. Total Cost

The total cost for resurfacing road length L_{T} by scheduling m work zones, $C_{P T}^{82}$, is expressed as:

$$
\begin{align*}
C_{P T}^{82} & =\sum_{i}^{m} C_{t i}^{82} \\
& =\sum_{i}^{m}\left(z_{1}+z_{2} L_{i}\right)+\sum_{i}^{m} C_{q i}^{82}+\sum_{i}^{m} C_{v i}^{82}+\sum_{i}^{m} v_{d} \Delta t_{i}+\sum_{i}^{m} \frac{\left(C_{q i}^{82}+C_{v i}^{82}\right)}{v} \frac{n_{a} v_{a}}{10^{8}} \tag{6.20}
\end{align*}
$$

The total cost in Eq.(6.20) will be minimized with the Simulated Annealing algorithms, including SAUAMD and SAMAMD. The SAUAMD (Simulated Annealing algorithm for Uniform Alternatives with Multiple Detour paths) follows the same
procedures as SAUASD but its cost function is replaced by Eq.(6.20) for multiple detour paths. SAMAMD is derived below.

6.2.3 Simulated Annealing Algorithm for Mixed Alternatives with Multiple Detour Paths - SAMAMD

The optimization with SAUAMD and the threshold analysis for selecting alternatives in this case study will be presented in Section 6.4. Moreover, in order to further reduce total cost by considering mixed alternatives with different configurations in successive zones, an improved search method, SAMAMD (Simulated Annealing algorithm for Mixed Alternatives with Multiple Detour paths), is developed here for selecting alternatives in successive zones, where the diverted fractions, p and k, for each zone are optimized. The concept of this search method for multiple detour paths is similar to the SAMASD method shown in Section 5.2 but the new diverted fraction k along the additional detour is added and optimized. This search method can be obtained by modifying Figures 5.3 and 5.4.

The SAMAMD algorithm is as follows:

1. Add new variables k_{i} and $k_{\text {opt }, i}$ in Step 0 in Section 4.2 .2 (the variables A_{i}, p_{i}, $A_{\text {opt }, i,} p_{\text {opt }, i}$ have been added in Section 5.2.2), where
k_{i} : diverted fraction of $p Q_{l}$ along $\mathrm{F} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ for zone $i, k_{i}=0-1, i=1, \ldots, m ;$
$k_{\text {opt }, i}$: final optimal diverted fraction of $p Q_{1}$ along $\mathrm{F} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ for zone $i, k_{\text {opt }, i}=0$ $-1, i=1, \ldots, m$.

The notation used for eight-lane highway alternatives is applied here. " 81 " represents Alternative 8.1. For other multiple-lane highway work zones, Alternatives 8.1, 8.2, and 8.3 can be replaced.

Set the initial $A_{o p t, i},=81, p_{o p t, i}=0, k_{o p t, i}=0, i=1, \ldots, m$, for all zones.
2. Modify Figure 5.4. Test possible A_{i}, p_{i}, and k_{i} combinations and calculate the total cost for the current combination. If the total cost for the current combination is lower than for the previous combination, update $A_{\text {opt }, i}, p_{\text {opt }, i}$, and $k_{\text {opt }, i}$; otherwise, keep the previous solution and mixed alternatives. This procedure terminates when all possible A_{i}, p_{i}, and k_{i} combinations are tested. Figure 6.2 shows the flow chart for determining alternatives and diverted fractions in SAMAMD.

Figure 6.2 Determining Alternatives and Diverted Fractions in SAMAMD

6.3 Development of Simulation Model

6.3.1 Simulation Model for Work Zone

In Chapters 4 and 5, user costs are determined with heuristic algorithms, SAUASD and SAMASD. However, the user costs for a road network with multiple detour paths can also be obtained from simulation. Improved analytical models incorporating equilibrium assignment and queuing relations as well as a detailed simulation model using CORSIM are developed. Both of these analyze diversion of flows that vary over time through multiple paths in a highway network. The simulation model which analyzes users delay is developed to evaluate the optimized results obtained with the analytical models developed in this study and to evaluate the effectiveness of these analytical models. CORSIM (Corridor Simulator) is a microscopic simulation model developed by Federal Highway Administration (FHWA) which can be adapted to simulate traffic operations around a work zone. This can be done by assuming that a lane closure for a work zone results in the same impact on highway capacity as a lane blockage caused by an incident.

Note that the optimization models in Chapters 4 and 5 are based on a macroscopic model in which speed is derived from the relations among flow, speed, and density. CORSIM, a microscopic simulation model, is based on a car following theory, from which speeds are derived. A simulation model such as CORSIM provides a very comprehensive and detailed method for estimating the delays resulting from a work zone in a complex road network. Therefore, it will be used to estimate such user delay costs. The user costs will be obtained separately from analytic and simulation models and then compared.

6.3.2 Evaluation of Optimization Models by Simulation

The simulation model using CORSIM presented in this chapter is used not only for estimating user costs but also for evaluating the analytical models developed in this study. The current work zone policy and the optimized results will be simulated and compared. The current policy is the current work zone schedule used by highway agencies. It can be obtained from local highway agencies. The optimized results can be obtained with the SAMAMD algorithm which is developed in Section 6.2.3. Figure 6.3 shows how the effectiveness of optimization models is evaluated based on the CORSIM simulation model. The procedures are as follows:

1. Read input data of optimization model from original TRF file, which is the simulation input file of CORSIM (no work zone parameters are set in the original TRF file). Highway geometric characteristics, such as main road length, detour length, and traffic data, such as hourly traffic volumes and turn movement percentages, can be obtained from a TRF file. The input data for work zone optimization models can also be read from a TRF file.
2. Generate Optimized Solution: Run the optimization model. The optimized solution, including optimized work zone lengths, zone starting times, zone ending times, and diverted fractions can be obtained. Write these values into the original TRF file and save that as another TRF file. A new TRF file with optimized work zone schedule is generated.
3. Run Simulation based on Optimized Solution: Use this new TRF file to run CORSIM and obtain the simulation results for the previously optimized work zone schedule.
4. Specify Current Work Zone Policy and Simulate it: Write the current work zone policy into the original TRF file. A new TRF file with the current policy is then generated. Use this TRF file to run a CORSIM and obtain the simulated output for the current policy.
5. Evaluation of Optimization Model: First, compare the total cost of the current policy, estimated with the objective function developed in Eq.(6.14), and the total cost minimized by SAMAMD. Check if the minimized total cost is lower than the current total cost. If yes, this indicates that the optimized solution is effective and that current policy can be improved. Otherwise, the solution obtained with SAMAMD is not really optimized.

Second, compare the simulation outputs based on the optimized solution and the current policy. Check if the simulated user cost of the optimized solution is lower than the simulated user cost for the current policy. If yes, this indicates that the simulation results are consistent with the optimization results. The optimization model does reduce total cost, including user cost and maintenance cost.

Otherwise, the solution obtained with SAMAMD is not better than the current policy.

Figure 6.3 Evaluation of Work Zone Optimization Model by Simulation

6.4 Case Study

The road network analyzed in this case study includes I-95 and US 1, from MD 32, MD 175, to MD 100. This case study will sequence and schedule unequal work zones based on the current policy and the optimized results for a 2.965 -mile one lane maintenance project on I-95 Northbound, from MD 32 to MD 175. The Maryland State Highway Administration (SHA) shows that the current lane-closure policies for highway maintenance in Maryland (Chen, 2003) are 9:00 a.m. - 3:00 p.m. and 7:00 p.m. - 5:00 a.m. for single-lane closure; 10:00 p.m. - 5:00 a.m. for double-lane closure; and 12:00 a.m. - 5:00 a.m. for three-lane closure. Single-lane closure policy is applied for a onelane maintenance project here.

6.4.1 Optimization Results

The optimization by SAUAMD and SAMAMD for I-95 case study is presented in this section. The numerical values for each variable in this section were obtained from the Maryland State Highway Administration (SHA) and shown in Table 6.1. Table 6.2 shows the AADT and hourly traffic distributions on the maintained road and the detour. The annual average daily traffic (AADT) in I-95 Northbound is 94,438 vehicles. The annual average daily traffic on the detour, US 1 Northbound, is 26,377 vehicles per day. Two possible detour paths in Figure 6.1(c), $p k Q_{1}$ along $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$ and $p(1-k) Q_{1}$ along $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{F} \rightarrow \mathrm{E}$, are along I-95 North \rightarrow MD 32 East \rightarrow US 1 North \rightarrow MD 100 West \rightarrow I-95 North and along I-95 North \rightarrow MD 32 East \rightarrow US 1 North \rightarrow MD 175 West \rightarrow I-95 North, respectively.

Table 6.1 Inputs for Case Study for IS-95 Eight-Lane Freeway Work Zones

Variable	Description	Values
AADT	Annual average daily traffic on main Road	94,438
	Annual average daily traffic on detour	26,377
$c_{d 3}$	Maximum discharge rate along detour CD	3,600 vph
c_{l}	Maximum discharge rate without work zone for one lane	2000 vph
$c_{r w l}$	Maximum discharge rate along work zone for one lane	1600 vph
L_{T}	Project road length = length of AE	2.965 miles
$L_{A E}$	Length of AE along detour	2.965 miles
$L_{A B}$	Length of AB along detour	4.933 miles
$L_{A C}$	Length of AC along detour	1.908 miles
$L_{C F}$	Length of CF along detour	2.453 miles
$L_{C D}$	Length of CD along detour	4.462 miles
$L_{\text {FE }}$	Length of FE along detour	0.602 miles
$L_{D B}$	Length of DB along detour	1.133 miles
$N_{\text {int }, \text { CF }}$	Number of intersections along detour CF	3
$N_{\text {int,CD }}$	Number of intersections along detour CD	3
n_{a}	Number of crashes per 100 million vehicle hour	$40 \mathrm{acc} / 100 \mathrm{mvh}$
$t_{\text {int }}$	Average waiting time per intersection	30 sec
V_{a}	Average approaching speed along AB	$65 \mathrm{mile} / \mathrm{hr}$
V	Average work zone speed	$35 \mathrm{mile} / \mathrm{hr}$
v	Value of user time	12 \$/veh hr
v_{a}	Average crash cost	142,000 \$/crash
v_{d}	Average Cost of Idling Time	800 \$/hr
z_{1}	Fixed setup cost	1,300 \$/zone
z_{2}	Average maintenance cost per lane-mile	$33,000$ \$/lane•mile
z_{3}	Fixed setup time	$2 \mathrm{hr} /$ zone
z_{4}	Average maintenance time per lane-mile	$9.6 \mathrm{hr} / \mathrm{lane} \cdot \mathrm{mile}$

Figure 6.4 shows the minimized total cost and project starting time for Alternatives 8.1, $8.2(p=0.1,0.2,0.3$, and 0.5$)$ when $k=0$. Figures $6.4(\mathrm{a})$ and (b) are the same figures but different minimized total cost scale are shown. Figure 6.4(b) shows that Alternative $8.2(p=0.1)$ has lowest minimized total cost among all alternatives. When the diverted fraction p reaches 0.5 , the minimized total costs become very high because the diverted flow plus the detour flow exceed the detour capacity and very high queuing
delays occur. Much higher diverted flows for Alternatives $8.2(p=0.6-0.9)$ and 8.3 ($p=1.0$) lead to much higher detour queuing delay than $p=0.5$ and these curves exceed the scale of $\$ 2,500,000$ so that they are not shown in Figure 6.4. The best project times for Alternatives $8.1(p=0), 8.2(p=0.1), 8.2(p=0.2), 8.2(p=0.3)$, and $8.2(p=0.5)$ are 19:00, 20:00, 23:00, 20:00, and 20:00, respectively. Based on the numerical values in Table 6.1, Alternative $8.2(p=0.1)$ reaches the minimized total cost at 20:00 among all alternatives. Its minimized total cost is $\$ 126,731 /$ project, with four work zones whose optimized lengths of $0.940,0.550,0.932$, and 0.543 miles add up to 2.965 miles, and whose idling time is 4.76 hours, as shown in Table 6.3.

The optimized results in Figure 6.4 and Table 6.3 are based on $k=0$, which means there is no diverted flow from $p Q_{l}$ along the detour $\mathrm{F} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$. Figure 6.5 shows the optimized results when k increases from 0 to 1 ($p=0.1$ and project starting time $=20: 00$). It indicates that a lower minimized total cost, $\$ 125,714 /$ project, can be found when $k=0.2$, compared to $\$ 126,731 /$ project when $k=0$. The optimized solution is shown in Table 6.4. Compared to Table 6.3, the user cost in Table 6.4 decreases by 4.6% and the maintenance cost is unchanged. The results show that flows appropriately diverted into multiple detour paths can yield lower total costs.

Table 6.2 AADT and Hourly Traffic Distributions on Main Road (IS-95) and Detour (US-1)

Hour	$Q_{1}(\mathbf{v p h}$ (IS-95 Northbound)	\% of AADT	$Q_{3}(\mathbf{v p h})$ (US-1 Northbound)	\% of AADT
0	1,362	1.44%	149	0.56%
1	1,149	1.22%	94	0.36%
2	897	0.95%	49	0.19%
3	917	0.97%	56	0.21%
4	1,160	1.23%	90	0.34%
5	2,098	2.22%	320	1.21%
6	3,670	3.89%	1,017	3.86%
7	5,143	5.45%	1,862	7.06%
8	5,388	5.71%	2,038	7.73%
9	4,283	4.54%	1,170	4.44%
10	4,403	4.66%	892	3.38%
11	4,904	5.19%	964	3.65%
12	4,982	5.28%	1,012	3.84%
13	5,095	5.40%	1,131	4.29%
14	5,519	5.84%	1,403	5.32%
15	7,167	7.59%	2,178	8.26%
16	7,336	7.77%	2,774	10.52%
17	7,214	7.64%	3,025	11.47%
18	7,089	7.51%	2,311	8.76%
19	5,172	5.48%	1,451	5.50%
20	3,307	3.50%	890	3.37%
21	2,406	2.55%	693	2.63%
22	2,158	2.29%	508	1.93%
23	1,619	1.71%	300	1.14%
AADT	$\mathbf{9 4 , 4 3 8}$	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{2 6} \% 377$	$\mathbf{1 0 0 . 0 0 \%}$
One Direction)				

Figure 6.4 Minimized Total Cost vs. Project Starting Time (IS-95, Eight-lane Freeway Work Zones, $k=0$) (a) Minimized Total Cost Scale: 100,000-2,500,000 (b) Minimized Total Cost Scale: 100,000-210,000

Table 6.3 Optimized Results for Case Study, Project Starting Time: 20:00, Alternative 8.2

($\boldsymbol{=}=0.1, k=0$)						
Zone No.	Optimal length (miles)	Duration (hr)	$\begin{gathered} \text { Starting } \\ \text { time } \\ (0-23.99) \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { time } \\ (0 \sim 23.99) \end{gathered}$	Idling time (hr)	Total Cost (\$/zone)
1	0.940	11.02	20.00	7.02	-	36,370
2	0.550	7.28	7.02	14.30	0.00	25,401
3	0.933	10.95	19.06	6.01	4.76	40,209
4	0.543	7.21	6.01	13.22	0.00	24,752
Total	2.965	36.46			4.76	126,731
Maintenance cost						103,045
Queuing delay cost						714
Moving delay cost						19,072
Idling cost						3,807
Crash Cost						94
Total cost						126,731
Total cost/project-mile (\$/lane-mile)						42,742

Figure 6.5 Minimized Total Cost vs. Diverted Fraction $\boldsymbol{k}(\boldsymbol{p}=\mathbf{0} \mathbf{1}$, Project Starting Time: 20:00, IS-95, Eight-lane Freeway Work Zones)

Table 6.4 Optimized Results for Case Study, Project Starting Time: 20:00, Alternative 8.2
($p=0.1, k=0.2$)

Zone No.Optimized length (miles)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$	
1	0.932	10.95	20.00	6.95	-	35,868
2	0.562	7.40	6.95	14.35	0.00	25,661
3	0.935	10.98	19.03	6.01	4.69	40,081
4	0.535	7.14	6.01	13.15	0.00	24,104
Total	2.965	36.46			4.69	125,714
Maintenance cost					103,045	
Queuing delay cost					746	
Moving delay cost					18,085	
Idling cost					3,749	
Crash Cost				89		
Total cost				125,714		
Total cost/project-mile (\$/lane-mile)			42,399			

The optimized results in Table 6.4 are based on uniform zone alternatives and obtained with SAUAMD. If SAMAMD is applied, new optimized results are found, which yield lower total cost than in Table 6.4. Table 6.5 shows the optimized results obtained with SAMAMD. The results are almost the same as the solution shown in Table 6.4 but there is no diversion in the first zone and $k=0$ for all four zones. This indicates that diverting traffic to a longer alternate path is not necessary if mixed alternatives are considered. Thus, two different traffic management plans, namely uniform alternatives and mixed alternatives, result in different work zone optimization results. Such different management strategies should be carefully considered in project scheduling.

Table 6.5 Optimized Results for Case Study, Project Starting Time: 20:00, Mixed Alternatives

Zone No.	Optimized length (mile)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Prefered Zone Alt.	Prefered Diverted Fraction p	Prefered Diverted Fraction k	Total Cost $(\$ /$ zone $)$
1	0.932	10.95	20.00	6.95	-	81	0.00	0.00	35,109
2	0.562	7.40	6.95	14.35	0.00	83	0.10	0.00	24,998
3	0.935	10.98	19.03	6.01	4.69	83	0.10	0.00	39,709
4	0.535	7.14	6.01	13.15	0.00	83	0.10	0.00	23,492
Total 2.965	36.46			4.69				123,308	
Maintenance cost							103,045		
Queuing delay cost									
Moving delay cost									
Idling cost								1546	
Crash Cost							3,749		
Total cost									
Total cost/project-mile (\$/lane-mile)						123,308			

6.4.2 Current Policy

Two current maintenance schedules for the 2.965 -mile project are shown in Tables 6.6 and 6.7 in term of this single-lane closure policy. Table 6.6 shows the first policy whose project starting time is 9:00 a.m. The first zone ends at 3:00 p.m. Using the relation between zone length and duration, $D_{i}=z_{3}+z_{4} L_{i}$, the zone length can be obtained. Each zone is scheduled step by step until total zone lengths add up to 2.965 miles. The total cost computed with Eq.(6.20) is $\$ 242,153 /$ project. The second policy shown in Table 6.7 starts at 19:00 p.m. The total cost is $\$ 199,994 /$ project.

Table 6.6 Current Work Zone Policy for Case Study ($p=0, k=0$), Project Starting Time: 9:00

Zone No.	Zone length $($ miles $)$	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$
1	0.417	6.00	9.00	15.00	-	49,056
2	0.833	10.00	19.00	5.00	4.00	37,420
3	0.417	6.00	9.00	15.00	4.00	52,256
4	0.833	10.00	19.00	5.00	4.00	37,420
5	0.465	6.46	9.00	15.46	4.00	66,001
Total	2.965	38.46			16.00	242,153
Maintenance cost					104,345	
Queuing delay cost					113,311	
Moving delay cost					11,108	
Idling cost					12,800	
Crash Cost				589		
Total cost				242,153		
Total cost/project-mile (\$/lane-mile)		81,671				

Table 6.7 Current Work Zone Policy for Case Study ($\boldsymbol{p}=\mathbf{0}, \boldsymbol{k}=\mathbf{0}$), Project Starting Time: 19:00

Zone No.	Zone length (miles)	Duration (hr)	Starting time $(0-23.99)$	Ending time $(0 \sim 23.99)$	Idling time (hr)	Total Cost $(\$ /$ zone $)$
1	0.833	10.00	19.00	5.00	-	34,220
2	0.417	6.00	9.00	15.00	4.00	52,256
3	0.833	10.00	19.00	5.00	4.00	37,420
4	0.417	6.00	9.00	15.00	4.00	52,256
5	0.465	6.46	19.00	1.46	4.00	23,842
Total	2.965	38.46			16.00	199,994
Maintenance cost					104,345	
Queuing delay cost					72,376	
Moving delay cost					10,084	
Idling cost				12,800		
Crash Cost				199,994		
Total cost				67,452		
Total cost/project-mile (\$/lane-mile)						

Compared to the current total costs in Tables 6.6 and 6.7, the optimized results obtained with SAMAMD in Table 6.5 can reduce total cost significantly. If the current project starting time is 9:00 a.m., the optimization model can reduce agency cost by 8.8%, user cost by 86.8%, and total cost by 49.1%; if the current project starting time is

19:00 a.m., the optimization model can reduce agency cost by 8.8%, user cost by 80.1%, and total cost by 38.3%. The comparison between the total costs of the current policy and optimized results obtained with SAMAMD is shown in Table 6.8. This comparison confirms that the SAMAMD algorithm developed in this study can very significantly reduce the agency cost, user cost, and total cost.

Table 6.8 Comparison Between Total Costs of Current Policy and Optimized Solution

	Current Policy	Optimized Solution	Reduction	$\%$ Reduced
Project Starting Time	9:00 a.m.	20:00 p.m.	-	-
Diversion	No Diversion	10\% Diversion	-	-
Number of Zones	5	4	-	-
Work Duration (hr)	38.46	36.46	2	5.2%
Idling Time (hr)	16	4.69	11.31	70.7%
Total Duration (hr)	54.46	41.15	13.31	24.4%
Agency Cost (\$/project)	117,145	106,794	10,351	8.8%
User Cost (\$/project)	125,008	16,514	108,494	86.8%
Total Cost (\$/project)	242,153	123,308	118,845	49.1%
Project Starting Time	$19: 00$ a.m.	$20: 00$ p.m.	-	-
Diversion	No Diversion	10% Diversion	-	-
Number of Zones	5	4	-	-
Work Duration (hr)	38.46	36.46	2	5.2%
Idling Time (hr)	16	4.69	11.31	70.7%
Total Duration (hr)	54.46	41.15	13.31	24.4%
Agency Cost (\$/project)	117,145	106,794	10,351	8.8%
User Cost (\$/project)	82,849	16,514	66,335	80.1%
Total Cost (\$/project)	199,994	123,308	76,686	38.3%

* Agency cost includes maintenance cost and idling cost and user cost includes queuing delay cost, moving delay cost, and crash cost.

6.4.3 Simulation Results

When the parameters for incidents (work zones) are set, we found that CORSIM only allows users to specify the onset time of an incident (in seconds) at up to 9,999 seconds. (Time is measured from the start of the simulation in CORSIM). This indicates that two zones cannot be successive in a TRF file if the first zone duration exceeds 9,999 seconds. Due to this limitation of CORSIM, the work zone activities for a 2.965 -mile project cannot be simulated by a TRF file. (All zone durations shown in Tables 6.5, 6.6, and 6.7 exceed 9,999 seconds.) Therefore each zone in Tables 6.5 to 6.7 has its TRF files. The TRF file for each zone is modified by adding work zone length and location (for both current policy and optimized solution) and changing turn-movement percentages (for optimized solution). The original TRF file without a work zone is necessary because the net delay due to a work zone is the difference between the simulated delay with and without that work zone. The simulation results for this IS-95 case study, including the current policies (starting at 19:00) and optimized solution with mixed alternatives, are shown in Table 6.9.

Table 6.9(a) Simulation (Simplified Network ${ }^{1}$) and Optimization Results of Current Policies and Optimized Solution

Zone	Work Zone Duration	Simulation Duration	Simulation Delay with Work Zone (veh-hr)	Simulation Delay without Work Zone (veh-hr)	Net Delay due to Work Zone (veh-hr)	Delay by Optimization Model ${ }^{2}$ (veh-hr)
Current Policy (Project Starting Time: 19:00)						
1	19.00-5.00	19.00-9.00	243	158	85	-
2	9.00-15.00	9.00-19.00	7,326	5,239	2,087	-
3	19.00-5.00	19.00-9.00	941	158	784	-
4	9.00-15.00	9.00-19.00	8,643	5,239	3,404	-
5	19.00-1.46	19.00-9.00	998	158	841	-
Total	-	-			7,201	6,904
Optimized Solution (Project Starting Time: 20:00)						
1	20.00-6.95	19.00-9.00	164	158	6	-
2	6.95-14.35	6.00-19.00	5,828	5,428	401	-
3	19.03-6.01	19.00-9.00	430	158	272	-
4	6.01-13.15	6.00-19.00	6,202	5,428	774	-
Total	-	-			1,453	1,376

1. Simplified Network is developed in this study and has the same configuration as the Figure 6.1(c) The traffic volumes and link lengths are applied from Tables 6.1 and 6.2.
2. Delays by Optimization Model are obtained from the user costs in Table 6.8 divided by the value of user time v (baseline $=\$ 12 / \mathrm{hr})$.

Table 6.9(b) Simulation (Complete Network ${ }^{1}$) and Optimization Results of Current Policies and Optimized Solution

| Zone | Work Zone
 Duration | Simulation
 Duration | Simulation
 Delay with
 Work Zone | Simulation
 Delay without
 Work Zone | Net Delay
 due to
 Work
 Zone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current Policy (Project Starting Time: 19:00) | | | | | |
| 1 | $19.00-5.00$ | $19.00-9.00$ | 7,188 | 4,906 | 2,283 |
| 2 | $9.00-15.00$ | $9.00-19.00$ | 27,204 | 14,898 | 12,306 |
| 3 | $19.00-5.00$ | $19.00-9.00$ | 6,282 | 4,906 | 1,376 |
| 4 | $9.00-15.00$ | $9.00-19.00$ | 26,688 | 14,898 | 11,790 |
| 5 | $19.00-1.46$ | $19.00-9.00$ | 5,046 | 4,906 | 140 |
| Total | - | - | - | - | $\mathbf{2 7 , 8 9 5}$ |

Optimized Solution (Project Starting Time: 20:00)

1	$20.00-6.95$	$19.00-9.00$	5,066	4,906	160
2	$6.95-14.35$	$6.00-19.00$	40,727	23,943	16,784
3	$19.03-6.01$	$19.00-9.00$	5,207	4,906	301
4	$6.01-13.15$	$6.00-19.00$	25,832	23,943	1,889
Total	-	-	-	-	$\mathbf{1 9 , 1 3 5}$

1. Complete Network is provided by the Maryland State Highway Administration. The traffic volumes and link lengths are applied from Tables 6.1 and 6.2.

Table 6.10 Comparison of the Results of Optimization Model and Simulation Model

	Current Policy	Optimized Solution	Delay (or Cost) Reduction	\% Reduction
Project Starting Time	$19: 00$	$20: 00$	-	-
Optimization Model				
Agency Cost (\$/project)	117,145	106,794	10,351	8%
Delay by Analytical Model (veh-hr)	6,904	1,376	5,528	80%
Simulation Model				
Delay by Simulation (veh-hr) (Simplified Network)	7,201	1,453	5,748	80%
Delay by Simulation (veh-hr) (Complete Network)	27,895	19,135	8,760	31%

The overall net simulated work zone delay of the optimized results decreases by 80% (simplified network) and 31% (complete network) compared to the current policy starting at 19:00. A comparison of the results of optimization and simulation models indicates that they are consistent, as shown in Table 6.10. The optimization models do significantly reduce total cost, including user cost and maintenance cost, compared to the total cost of the current policy in Maryland.

Chapter VII Conclusions and Recommendations

7.1 Summary

Work zone optimization problems have been solved with analytical methods for steady traffic inflows and heuristic Simulated Annealing algorithms for time-dependent inflows and multiple detour paths. In Chapter 3, four alternatives for two-lane highway work zones and four alternatives for four-lane highway work zones are developed and optimized analytically. The objective of work zone optimization is to minimize the total cost, including agency cost and user cost by optimizing work zone lengths for each alternative and finding optimal diversion fraction. Guidelines for selecting the best alternative for different characteristics of traffic flows, road and maintenance processes are developed by deriving thresholds among alternatives. In Chapter 4, the models for two-lane highway and four-lane highway work zones for time-dependent inflows are developed. Two optimization methods, Powell's and Simulated Annealing, are adapted for this problem and compared. In numerical tests, the Simulated Annealing algorithm yields better solutions using less computer time than Powell's Method. The reliability of Simulated Annealing algorithm is also assessed.

In Chapter 5, optimization models are developed for four work zone alternatives on two-lane highways and four alternatives on four-lane highways, all with timedependent inflows. The SAUASD (Simulated Annealing for Uniform Alternatives with a Single Detour) algorithm is developed for alternative selection. Moreover, the SAMASD (Simulated Annealing for Mixed Alternatives with a Single Detour) algorithm is developed to search through mixed alternatives and to optimize diverted fractions in order to find lower total cost than for uniform alternatives.

In Chapter 6, work zone optimization models for a road network with multiple detour paths and the SAMAMD (Simulated Annealing for Mixed Alternatives with Multiple Detour paths) algorithms are developed. Both analytical and simulation models are developed to estimate delay cost and total cost. For analyzing traffic diversion through multiple detour paths in a road network, a Simulated Annealing algorithm combined with an assignment method is used to optimize work zone lengths and schedule the resurfacing work. Simulation analyses based on CORSIM are not only used to estimate delay cost, but also to evaluate the effectiveness of optimization models. In the IS-95 case study, a comparison of the results from optimization and simulation models indicates that they are consistent.

7.2 Conclusions

The conclusions from the numerical results, threshold analysis, and case study may be summarized as follows.

7.2.1 Work Zone Optimization for Steady Traffic Inflows

Two-lane highway work zones

1. When optimized in Section 3.6.1, Alternative 2.1 has higher user costs and shorter zones while Alternative 2.4 has lower user costs and longer zones than other alternatives in the baseline conditions.
2. Based on the threshold analysis presented in Section 3.6.2, Alternative 2.4 is preferred alternative in the baseline conditions. As detour length increases beyond its threshold (10 km), Alternatives 2.1, 2.2, and 2.3 eventually become preferable.
3. Considering an optimized diverted fraction among Alternatives 2.1, 2.2, and 2.3 in Section 3.6.3, full diversion is preferable if the detour is short; partial or no division becomes preferable as detour length increases.

Four-lane highway work zones

1. Section 3.7.2 shows that traffic flows affect the rankings of alternatives.
2. In the threshold analysis, Alternative 4.3 is preferred when Q_{I} does not exceed the first flow threshold, 800 vph . As Q_{1} increases beyond its threshold, Alternatives 4.1 or 4.2 becomes preferable.
3. Considering the optimized diverted fractions among Alternatives 4.1, 4.2, and 4.3 under the baseline conditions in Section 3.7.3, full diversion $(p=1)$ is preferable if Q_{l} is lower than 800 vph ; no diversion $(p=0)$ is preferable if Q_{l} is between 800 vph and the work zone capacity of 1200 vph ; for higher Q_{l}, the total cost is minimized if any vehicles beyond 1200 vph from Q_{I} are detoured (the detour length is the baseline value 6 km).
4. Alternative 4.4 ("cross-over") is very unlikely to be the least-cost alternative.

7.2.2 Work Zone Optimization for Time-Dependent Inflows

Two-lane highway work zones

1. When considering in Section 4.3 project starting times at each of the 24 hours over a day, the total cost comparison demonstrates that the SAUA (Simulated Annealing with Uniform Alternatives) algorithm yields better results (18 of 24) in less time than Powell's Method.
2. The optimized work zone lengths and schedules are sensitive to input parameters such as the average cost of idling time, work zone setup cost and its duration.
3. Maintenance plans with or without pauses can be optimized with the proposed methods, preferably with the SAUA.
4. In Section 4.5, to test the reliability of the SAUA, 50 replications of the cost minimization are performed with 50 different groups of random numbers. Given the small relative variance of the 50 replications of minimized total costs, we are quite unlikely to find a value much below the mean. Thus, the statistical analysis and numerical examples indicate that Simulated Annealing is very likely to find solutions that are very close in value to the global optimum.

Four-lane highway work zones

1. When considering in Section 4.4 project starting times at each of the 24 hours over a day, the total cost comparison also demonstrates that the SAUA algorithm yields better results (for 17 of 24 cases) in less time than Powell's Method.
2. The optimized work zone lengths and schedules are not sensitive to the average cost of idling time v_{d} because queuing delay in the baseline condition will be cumulative during peak periods and even increasing the average cost of idling time v_{d} cannot compensate for the high queuing delay costs in fourlane highway work zones, so that the pauses are mandatory during peak periods.

7.2.3 Work Zone Optimization with a Detour

1. Based on the threshold analysis in Section 5.3, Alternative 2.3 is preferred in the baseline condition. As detour AADT increases beyond its threshold of 25,000 vehicles per day, Alternatives $2.2(p=0.3)$ and 2.1 become preferable.
2. In Section 5.4, for four-lane highway work zones, no detour AADT threshold is found because higher detour AADT and higher diverted flow increase the queuing delay on the detour quickly, so that no threshold with Alternative 4.1 occurs.
3. In Chapter 3, without considering detour capacity, alternatives with high diverted fraction may be preferable for four-lane highway work zones. However, those alternatives never become preferable when considering detour queuing delay and time-dependent inflows in Chapter 5, due to faster increases in detour queuing delay.
4. According to the numerical example for mixed alternatives in Section 5.5, partial diversion or no diversion is appropriate during daytime; full diversion is usually preferable during nighttime due to faster return to the main road than during daytime.
5. When detour AADT is higher, mixed alternatives that combine no diversion, partial diversion, or full diversion on successive zones, can yield lower minimized total cost than uniform alternatives. An appropriate traffic management plan should be developed based on different traffic demands.

7.2.4 Work Zone Optimization for Multiple Detour Paths

1. Appropriately diverted flows into multiple detour paths can yield lower total costs than single detours.
2. For the IS-95 case study in Section 6.4.2, the optimized solution can reduce total cost very significantly below the current policy. If the current project starting time is 9:00 a.m., the SAMAMD can reduce agency cost by 8.8%, user cost by 86.8%, and total cost by 49.1%. If the current project starting time is 19:00 a.m., the SAMAMD can reduce agency cost by 8.8%, user cost by 80.1%, and total cost by 38.3%.
3. The overall net simulated work zone delay of the optimized results decreases by 80% (simplified network) and 31% (complete network) compared to the current policy starting at 19:00. A comparison of the results from optimization and simulation models indicates that they are consistent. The optimization models do significantly reduce total cost, including user cost and maintenance cost compared to the total cost of the current work zone policy in Maryland.

7.3 Recommendations for Future Research

Although this study has developed satisfactory methods for optimizing work zone scheduling problem, possible extensions of the analysis and models developed in this study are desirable and suggested as follows:

1. Speeded-up Maintenance Work

In this study, average maintenance $\operatorname{cost} z_{2}$ and average maintenance time z_{4} are constants. However, highway agencies may be able to speed up maintenance work by accepting higher cost, i.e. for more equipment and crews, to reduce the maintenance duration. Models considering the relations between maintenance cost and duration are desirable.

2. Two-lane Highway Models for Demand that Exceeds Capacity

Optimization models developed in this study for two-lane highway work zones are suitable when hourly demands in both directions do not exceed work zone capacity. Future extensions of the present work might consider work zone optimization for two-lane highways where two-way demand may temporarily exceed one-lane capacity during some periods.

3. Comparison of System Optimization and User Equilibrium

The models in this study are based on system optimization, which minimizes the total costs, including highway agency cost and user cost; however, in a multiple detour network, we may expect "user equilibrium" assignment to reflect user decisions, based on available information, regardless of the pre-planned traffic control decision. Therefore, comparisons of "system optimization" and "user equilibrium" results should be made in future research.

4. Safety Effects of Different Alternatives

Safety cost is included in user cost for this study and it is derived based on queuing delay and moving costs. However, work zone configurations for different
alternatives might have different safety influences. Further research on safety cost estimation and safety improvements is desirable.

5. Work Zone Cost and Duration Parameters

We assume the fixed setup cost and its duration are the same for all alternatives in this study. However, work zone configurations for different alternatives may vary and these cost and duration parameters should be surveyed for different alternatives. Further research on applying different cost and duration parameters for various alternatives is desirable.
6. Transition Cost for Mixed Alternatives

The SAMASD algorithm in Section 5.2.2 and the SAMAMD algorithm in Section 6.2.3 for mixed alternatives are assumed that there is no transition cost from one zone alternative to the other zone alternative. However, there may well be transition costs when successive work zone configurations are different. Future research for searching different alternatives for each zone within a project may consider transition cost as well as different cost and duration parameters.
7. Development of Simulation-based Methods for Optimizing Flows through

Complex Networks

Simulation in this study is applied to evaluate the effectiveness of work zone optimization models. However, simulation might also be used to evaluate the objective functions of the work zone optimization models in optimizing flows (or diverted fractions) through complex networks, as well as work zone scheduling. However, such optimization through simulation may impose severe computation
burdens. Further research on work zone optimization through simulation is desirable.

8. Consideration of Work Zone Constraints

The optimization model in this study could be further developed to consider some highway agencies's constraints, e.g. on queue length, number of lane closed at various times, and maximum diverted fractions.

9. Time-Dependent Diversion Fraction

In the current models the diversion fractions stay constant while one zone is resurfaced. However, diversion fractions which vary with time-dependent inflows may be considered for dynamic traffic control. Further research on time-depedent diversion fractions is desirable.

REFERENCES

Aarts, E., and Korst, J. (1989) "Simulated Annealing and Boltzmann Machines." John Wiley \& Sons Ltd., Eindhoven, the Netherlands.

Adamopoulos, G. I., and Pappis, C. P. (1998) "A Neighbourhood-based hybrid method for Scheduling with Fuzzy Due-dates." International Transaction in Operational Research, Vol.5, No.2, 147-153.

Cassidy, M. J., Son, Y. T., and Rosowsky, D.V. (1994). "Estimating Motorists Delay At Two-Lane Highways Work Zones." Transp. Res. A, 28(5), 433-444.

Cassidy, M. J., and Bertini, R.L. (1999). "Some Traffic Features at Freeway Bottlenecks." Transp. Res. B, 33, 25-42.

Carr, R. I. (2000). "Construction Congestion Cost (CO ${ }^{3}$) Traffic Impact And Construction Cost.", J. Transp. Engrg., ASCE, 126(2), 114-121.

Chang, C. (1994). "Flight Sequencing and Gate Assignment at Airport Hubs." Ph.D. Dissertation, Civil Engrg. Dept., University of Maryland, College Park.

Chang, Y., Sawaya, O. B., and Ziliaskopoulos, A. K. (2001). "A Tabu Search Based Approach for Work Zone Scheduling." TRB 80rd Annu. Meeting, Transportation Research Board, Washington, D.C.

Chen, C. H. (2003) "Notes of Meeting at the Maryland State Highway Administration on Integrated Management of Highway Maintenance and Traffic - March 12, 2003." Brooklandville, Maryland.

Chen, C. H., and Schonfeld, P. (2002). "Work Zone Lengths for a Two-lane Road with an Alternate Route." TSC Report 2002-20, University of Maryland, College Park, 2002.

Chien, S., and Chowdhury, S. M. (1998). "Freeway Capacity Analysis with Microscopic Simulation Model (CORSIM)." FHWA-RD-97, Federal Highway Administration, U.S. Department of Transportation.

Chien, S., and Schonfeld, P. (2001). "Optimal Work Zone Lengths For Four-Lane Highways." J. Transp. Engrg., ASCE, 127(2), 124-131.

Chien, S., Tang, Y., and Schonfeld, P. (2002). "Optimizing Work Zones For Two-Lane Highway Maintenance Projects." J. Transp. Engrg., ASCE, 128(2), 145-155.

Cohen, S., and Clark, J. (1986). "Analysis of Freeway Reconstruction Alternative Using Traffic Simulation." Transp. Res. Rec. 1132, Transportation Research Board, Washington, D.C., 8-13.

Colorni, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G., and Trubian, M. (1996). "Heuristic from Nature for Hard Combinatorial Optimization Problems." Int. Trans. Opl. Res. Vol.3, No. 1, 1-21.

Dudek, C. L., and Richard, S. H. (1982). "Traffic Capacity Through Urban Freeway Work Zones In Texas." Transp. Res. Rec. 869, Transportation Research Board, Washington, D.C., 14-18.

Dudek, C. L., Richard, S. H., and Buffington, J. L. (1986). "Some Effects Of Traffic Control On Four-Lane Divided Highways." Transp. Res. Rec. 1086, Transportation Research Board, Washington, D.C., 20-30.

Federal Highway Amininstration (2000) "Methods and Procedures to Reduce Motorist Delays in European Work Zone." FHWA-PL-00-001, FHWA, U.S. Department of Transportation.

Fwa, T. F., Cheu, R. L., and Muntasir, A. (1998). "Scheduling of Pavement Maintenance to Minimize Traffic Delays." Transp. Res. Rec. 1650, Transportation Research Board, Washington, D.C., 28-35.

Gerlough, D. L. and Huber, M. J. (1975). "Traffic Flow Theory." Spec. Rep. 165. Transportation Research Board, Washington, D.C.

Golden, B. L., and Skiscim, C. C. (1986) "Using Simulated Annealing to Solve Routing and Location Problems." Naval Research Logistics Quarterly, Vol. 33, 261-279.

Grefenstette, J. J. (1987) "Incorporating Problem Specific Knowledge into Genetic Algorithms." Genetic Algorithms and Simulated Annealing, edited by Lawrence Davis, Pitman Publishing, London, 42-60.

Hadi, M. A., and Wallace, C. E. (1994) "Optimization of Signal Phasing and Timing Using Cauchy Simulated Annealing." Transp. Res. Rec.1456, Transportation Research Board, Washington, D.C., 64-71.

Hall, F. L., Hurdle, V. F., and Banks, J. H. (1992) "Synthesis of Recent Work on the Nature of Speed-Flow and Flow-Occupancy Relationships on Freeways." Transp. Res. Rec.1365, Transportation Research Board, Washington, D.C., 12-18.

Highway Capacity Manual (1985), Spec. Rep. 209, Transportation Research Board, Washington, D.C.

Highway Capacity Manual (1994), Spec. Rep. 209, Transportation Research Board, Washington, D.C

Janson, B. N., Anderson, R. B., and Cummings, A. (1987). "Mitigating Corridor Travel Impacts During Reconstruction: An Overview of Literature, Experiences, And Current

Research." Transp. Res. Rec.1132, Transportation Research Board, Washington, D.C., 34-41.

Jiang, X., and Adeli, H. (2003). "Freeway Work Zone Traffic Delay and Cost
Optimization Model." J. Transp. Engrg., ASCE, 129(3), 230-241.
Jiang, Y. (1999). "Traffic Capacity, Speed, and Queue-Discharge Rate of Indiana’s FourLane Freeway Work Zones." Transp. Res. Rec.1657, Transportation Research Board, Washington, D.C., 10-17.

Jiang, Y. (1999). "A Model for Estimating Excess User Costs at Highway Work Zones." Transp. Res. Rec.1657, Transportation Research Board, Washington, D.C., 31-41.

Jiang, Y. (2001). "Estimation of Traffic Delays and Vehicle Queues at Freeway Work Zones." TRB 80rd Annu. Meeting, Transportation Research Board, Washington, D.C.

Kim, T. and Lovell, D. J. (2001). "A Methodology to Estimate Capacity for Freeway
Work Zones." TRB 80rd Annu. Meeting, Transportation Research Board, Washington, D.C.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983) "Optimization by Simulated Annealing." Science, 220, 671-680.

Kokubugata, H., Itoyama, H., and Kawashima, H. (1997) " Vehicle Routing Methods for City Logistics Operations." Transportation Systems 1997, Chania, Greece, Vol. 2, 727732.

Krammes, R. A., and Lopez, G. O. (1994). "Updated Capacity Values For Short-Term Freeway Work Zone Lane Closures." TRB 73rd Annu. Meeting, Transportation Research Board, Washington, D.C.

Law, A. M., and Kelton, W. D. (2000) "Simulation Modeling and Analysis." 3rd edition, McGraw-Hill, 410-412.

Lee, C., and Machemehl, R. (1997) "Global, Local and Iterative Searches to the Equilibrium Network Traffic Signal Setting Problem." Transportation Research Forum, 39th Annual Meeting, Montreal, Canada, Vol. 2, 753-777.

Liu, Y., Ma, L., and Zhang, J. (2000) "GA/SA/TS hybrid algorithms for reactive power optimization." 2000 Power Engineering Society Summer Meeting, Seattle, WA, Vol. 1, 245-249.

Martinelli, D. R., and Xu, D. (1996). "Delay Estimation and Optimal Length for FourLane Divided Freeway Workzones." J. Transp. Engrg, ASCE, 122(2), 114-122.

Maze, T., and Kamyab, A. (1999). "Work Zone Simulation Model - Companion Report for Traffic Management Strategies for Merge Areas in Rural Interstate Work Zones." ISU CTRE Management Project 97-12, Iowa Department of Transportation.

McCoy, P. T., Pang, M., and Post, E. R. (1980). "Optimum Length Of Two-Lane TwoWay No-Passing Traffic Operation In Construction And Maintenance Zones On Rural Four-Lane Divided Highways." Transp. Res. Rec. 773, Transportation Research Board, Washington, D.C., 20-24.

McCoy, P. T., and Peterson, D. J. (1987). "Safety Effects Of Two-Lane Two-Way Segment Length Through Work Zones On Normally Four-Lane Divided Highways." Transp. Res. Rec. 1163, Transportation Research Board, Washington, D.C., 15-21.

Memmott, J. L., and Dudek, C. L. (1984). "Queue And Cost Evaluation Of Work Zones (QUEWZ)." Transp. Res. Rec. 979, Transportation Research Board, Washington, D.C., 12-19.

Messer, C. J., Gartner, N., and Rathi, A. K. (Editors) (1997). "Traffic Flow Theory." Spec. Rep. 165 Revised Edition, Transportation Research Board, Washington, D.C.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., and Teller, A. H. (1953)
"Equation of State Calculation by Fast Computing Machines." Journal of Chemical Physics, Vol. 21, 1087-1092.

Nallamottu, U. B., Chambers, T. L., and Simon, W. E. (2002) "Comparison of the Genetic Algorithm to Simulated Annealing Algorithm in Solving Transportation Location-allocation Problems with Euclidean Distances". Proceedings of the 2002 ASEE Gulf-Southwest Annual Conference, the University of Louisiana at Lafayette, American Society for Engineering Education.

Nemeth, Z. A., and Rathi, A. K. (1985). "Potential Impact of Speed Reduction at Freeway Lane Closures: A Simulation Study." Transp. Res. Rec. 1035, Transportation Research Board, Washington, D.C., 82-84.

Oda, T., Otokita, T., Tsugui, T., and Mashiyama, Y. (1997) " Application of Simulated Annealing to Optimization Traffic Signal Timings." Transportation Systems 1997, Chania, Greece, Vol. 2, 733-736.

Pain, R. F., McGee, H. W., and Knapp, B. G. (1981). "Evaluation of Traffic Control For Highway Work Zones." Nat. Cooperative Hwy. Res. Program Rep. No. 236,

Transportation Research Board, Washington, D.C.
Pigman, J. G., and Agent, K. R. (1990). "Highway Accidents in Construction and Maintenance Work Zones." Transp. Res. Rec. 1270, Transportation Research Board, Washington, D.C., 12-21.

Pham, D. T., and Karaboga, D. (2000) "Intelligent Optimisation Techniques - Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks." Springer-Verlag London Limited, London.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1999) "Numerical Recipes in C" Cambridge University Press.

Rouphail, N. M., and Tiwari, G. (1985). "Flow Characteristics At Freeway Lane Closures." Transp. Res. Rec. 1035, Transportation Research Board, Washington, D.C., 50-58.

Sadek, A. W., Smith, B. L., and Demetsky, M. J. (1999) "Artificial Intelligence Search Algorithms for Dynamic Traffic Routing." Transp. Res. Rec. 1679, Transportation Research Board, Washington, D.C., 87-94.

Schonfeld, P., and Chien, S. (1999) "Optimal Work Zone Lengths for Two-Lane Highways." Journal of Transp. Engrg. ASCE, 125(1), 21-29.

Schrock, S. D., and Maze, T. H., (2000) "Evaluation of Rural Interstate Work Zone Traffic Management Plans in Iowa Using Simulation." Mid-Continent Transportation Symposium 2000 Proceedings, 184-188.

Taniguchi, E., Yamada, T., and Takauchi, T. (1999) "Stochastic Vehicle Routing and Scheduling Using a Heuristic Approach." Fifth International Conference on Urban Transport and the Environment for the 21st Century, Island of Rhodes, Greece, 311320.

Traffic Safety Facts 2002 (2003), National Highway Traffic Safety Administration, U.S. Department of Transportation.

Underwood, C. (1994). "Time To Re-Cast The 1994/5 Structure Maintenance Program." Hwy. and Transp., 14-15.

Venugopal, S., and Tarko, A. (2000), "Safety Models for Rural Freeway Work Zones.", Transp. Res. Rec. 1715, Transportation Research Board, Washington, D.C., 1-9. Viera-Colon, S. I. (1999). "Optimal Work Zones for Four-Lane Highways." M.S. Thesis, Civil Engrg. Dept., Univ. of Maryland, College Park.

Wall, J., and Smith, M. R. (1998), "Life-Cycle Cost Analysis in Pavement Design", FHWA-SA-98-079, Federal Highway Administration, USDOT.

Wilhelm, M. R., and Ward, T. L. (1987) "Solving Quadratic Assignment Problems by Simulated Annealing." IIE Transactions, 107-119.

Wong, D. F., Leong, H. W., and Liu, C. L. (1988), "Simulated Annealing for VSLI Design", Kluwer Academic Publishers, Norwell, Massachusetts.

Wunderlich, K., and Hardesty D. (2003) "A Snapshot of Summer 2001 Work Zone Activity - Based on Information Reported on State Road Closure and Construction Websites", Final Report, Prepared for Federal Highway Administration, U.S. Department of Transportation. Zolfaghari, S., and Liang, M. (2002) "Comparison Study of Simulated Annealing, Genetic Algorithms and Tabu Search for Solving Binary Comprehensive Machine-Grouping Problems." International Journal of Production Research, Vol. 40, No. 9, 2141-2148.

Appendix A Variable List

The following variables are used in this study (with units in parentheses):
$A_{i} \quad=\quad$ Alternative for zone $i, A_{i}=j 1, j 2, j 3$, and $j 4, i=1, \ldots, m, j=2,4,6,8 ;$
$A_{o p t, i}=$ final optimized Alternative for zone $i, A_{o p t, i}=j 1, j 2, j 3$, and $j 4, i=1, \ldots, m, j=2$, 4, 6, 8;
$C_{a}^{2 i}=\quad$ crash cost per lane-kilometer for Alternative 2.i, $i=1,2,3,4$ ($\$ /$ lane $\cdot \mathrm{km}$);
$C_{a}^{4 i}=\quad$ crash cost per lane-kilometer for Alternative 4.i, $i=1,2,3,4$ ($\$ /$ lane $\cdot \mathrm{km}$);
$C_{a i}^{2 j}=\quad$ crash cost per lane-zone for work zone i for Alternative $2 . j, j=1,2,3,4$ (\$/lanezone);
$C_{a i}^{4 j}=\quad$ crash cost per lane-zone for work zone i for Alternative $4 . j, j=1,2,3,4$ (\$/lanezone);
$C_{I I}=$ idle cost for zone $i(\$ /$ zone $) ;$
$c_{l}=$ maximum lane discharge rate without a work zone for multiple- highways (vph/lane);
$C_{M}=$ maintenance cost per lane-kilometer (\$/lane $\cdot \mathrm{km}$);
$C_{m i}=$ maintenance cost per lane-zone for work zone $i(\$ /$ lane•zone);
$c_{o}=$ maximum discharge rate without work zone for four-lane two-way highways $(\mathrm{vph}) ;$ baseline $=2,600 \mathrm{vph}$;
$C_{P T}=$ total cost per lane for a maintenance project (\$/project);
$C_{P T}^{2 i}=$ total cost per lane for a maintenance project for Alternative 2.i, $i=1,2,3,4$ (\$/project);
$C_{P T}^{4 i}=$ total cost per lane for a maintenance project for Alternative 4.i, $i=1,2,3,4$ (\$/project);


```
    L ^ { * 2 i } = \text { optimized work zone length of Alternative 2.i,i=1,2,3,4(km);}
    L**ii}= optimized work zone length of Alternative 4.i,i=1,2,3,4(km)
    L}=\mp@code{distance from A to work zone start point (km);
    L2 = distance from work zone end point to B (km);
Lassign = deleted last zone length divided by m-1, which is averagely assigned to the
        previous m-1 zones;
    Lavg = average zone length in current solution;
    L
    L_l}=\mathrm{ length of first detour segment (km); baseline = 0.5 km;
    L}\mp@subsup{L}{d2}{}== length of second detour segment (km); baseline = 5 km
    L
    L min = minimum zone length in current solution;
    L
    Lt = L+LI'+L2; length from A to B (km); baseline = 5 km;
    \DeltaL = length unit for increasing or decreasing, baseline=0.01km;
    \DeltaLr}=\mathrm{ length difference between length unit and the remaining length of the deleted
        zone;
    m = number of work zones of a maintained project;
    N= number of cycles per maintained kilometer (cycles/kilometer);
    Ni = number of cycles for work zone i (cycles/zone);
    N Nij = number of cycles per varying traffic flow period D D (cycles);
    N limit = maximum number of iterations for temperature T}\mp@subsup{T}{j}{}\mathrm{ in which the total cost is successfully reduced to equilibrium;
```

$N_{\text {succ }}$	$=$	cumulative number of iterations for temperature T_{j} in which the total cost is
		successfully reduced to equilibrium;
$N_{r, s u c c}$	$=$	cumulative number of iterations for temperature T_{j} in which the total cost is
		successfully reduced for generating neighboring solution repeatedly using the
		same random numbers;
n_{a}	=	number of crashes per 100 million vehicle hour (acc/100mvh); baseline $=40$
		acc/ 100 mvh
n_{l}	=	number of lanes in Direction 1;
$n_{r l}$	$=$	number of the remaining lanes along a work zone;
p	$=$	diverted fraction of flow in Direction 1 to alternative route;
p_{i}	$=$	diverted fraction for zone $i, p_{i}=0-1, i=1, \ldots, m$;
$p_{\text {opt }, i}$	=	final optimized diverted fraction for zone $i, p_{\text {opt }, i}=0-1, i=1, \ldots, m$.
Q_{i}	$=$	hourly flow rate in Direction $i(\mathrm{vph})$;
$Q_{I}^{i j}$	=	traffic flow of Direction 1 during the period j for work zone $i(\mathrm{vph})$;
$Q_{2}^{i j}$	=	traffic flow of Direction 2 during the period j for work zone $i(\mathrm{vph})$;
$D s_{r}$	$=$	duration of Stage r for time-dependent inflows (h);
$T_{s r}$	$=$	starting time of Stage r for time-dependent inflows;
$T_{e r}$	=	ending time of Stage r for time-dependent inflows;
T_{0}	$=$	initial temperature in SA algorithm;
T_{f}	$=$	final temperature in SA algorithm;
t_{i}	$=$	discharge phase for servicing the traffic flow in Direction i (second);
$t_{1}^{i j}$	$=$	discharge phase for servicing the traffic flow $Q_{1}^{i j}$ in Direction 1 (second);
$t_{2}^{i j}$	$=$	discharge phase for servicing the traffic flow $Q_{I}^{i j}$ in Direction 2 (second);

$z_{3} \quad=\quad$ fixed setup time (hr/zone); baseline $=2 \mathrm{hr} /$ zone for all alternatives
$z_{4}=\quad$ average maintenance time per lane \cdot kilometer $(\mathrm{hr} / \mathrm{lane} \cdot \mathrm{km})$; baseline $=6$

Appendix B

User's Manual for Maryland Work Zone Optimization - MDZONES 2.0

Program Outline

The following program, "Maryland Work Zone Optimization, MDZONES", has been developed by the Department of Civil and Environmental Engineering of the University of Maryland at College Park. The purpose of MDZONES is to help highway agencies in determining work zone configurations, lengths and schedules for various road types. This software is developed in Microsoft Visual Basic 6.0.

Three model levels ("cases") are considered in this program. These provide increasingly detailed analysis, but with increasingly high input requirements. In the first case work zone length can be optimized for steady traffic inflows. The second case can be used to optimize a maintenance project with multiple work zones and time-dependent traffic inflows, including optimizing zone lengths and work schedules. The first and second cases can be analyzed with or without one detour. The third case can be applied to analyze multiple detour paths for a maintenance project if multiple paths are actually available. Users can choose one of the three cases based on the site condition, the availability of data, and the level of detail desired for the analysis.

Costs Considered in the Program

The total costs to be optimized by the program include maintenance costs, user delay costs and crash costs for two-lane, four-lane, six-lane, and eight-lane highways.

Program Installation

The program can be installed under Window-XP or Window2000 operating environment. Double-click the "setup.exe" under the "WindowXP Setup" directory in the
installation CD for installing the program for Window-XP operating system, or doubleclick the "setup.exe" under the "Win2000 Setup" directory for installing the program for Window2000 operating system. The program "MDZONES" can be easily installed by following the instructions shown on the screen during the installation. Users are advised to close all other programs before the installation. During the installation procedure, depending on the computer configuration, there might be a message box "C:\WINDOWS\System32\msvcrt.dll.The destination file is in-use. Please ensure that all other applications are closed." If this occurs, just select "Ignore", and then click "OK" in the next window. This will not affect the proper execution of the software.

Start the application

After installing MDZONES, choose "Start" from Microsoft Windows and choose "All Program" - "MDZONES". Then click the application "MDZONES" (Figure A-1). The program will start and the main menu of MDZONES will show on screen (Figure A2).

Figure A-1. Starting MDZONES

Figure A-2. Main Menu

There are three cases in this program:

- Case 1 , steady traffic demand;
- Case 2, time-dependent traffic demand;
- Case 3, multiple detour paths for time-dependent traffic demand.

For each case, users need a five-step procedure, including "Road Types (Network)", "Traffic Data", "Project Details", "(Scheduling) Optimization", and "Output Data". Users can choose one of three cases and start at "Road Types (Network)". Note that some inputs for the same step are different at various cases. Some input parameters are only applied in Case 2 or Case 3 for time-dependent traffic demands and some parameters are only applied in Case 3 for multiple detour paths. Users should determine all input data for three cases and learn how to save the output files before using this program officially. The five-step procedures for three cases are shown as follows.

1. Steady Traffic Demand

Step 1: Road Types
Click "Road Types" button within the frame of Steady Traffic Demand. Figure A3 will be shown. Users need to select one road type (two-lane, four-lane, six-lane or eight-lane), one or multiple alternatives under the road type selected, and one work type (grinding, patching or paving). For example, four alternatives are provided for 2-lane highways (refer to the main report for each alternative) in Figure A-3. Users can choose one alternative or multiple alternatives. If "Select All Alternatives and Find Best Alternatives" is chosen, the four alternatives will be selected automatically. Only one of three work types can be selected. Different default values of cost and duration parameters
will be set up for various work types. Click "Clear" button to cancel all selected alternative selection and work type. Click "OK" when alternative selection and work type are selected. Then "Road Types" window will be closed and the program returns to the main menu.

Figure A-3. Road Types (Steady Traffic Demand)

Please note that only one road type and its corresponding alternatives and work type can be selected. If users select two or more highway types plus their alternatives and work types, for example, if "Alternative 2.1" and "Paving" for 2-lane highway and Alternative 4.1 and "Patching" for four-lane highway are selected, the message "Please choose only one road type" will be shown when users click "OK" button. Click "Clear"
button under 2-lane or 4-lane highway tab to cancel one of highway type. Click "OK" again. The remaining highway type will be chosen. "Road Types" will be closed and the program returns to the main menu.

Step 2: Traffic Data

Click "Traffic Data" button. Figure A-4 will be shown to input traffic data, including traffic volumes, capacity, speed, and density.

Figure A-4. Traffic Data (Steady Traffic Demand)

Traffic volumes in Directions 1 and 2 are the traffic flows in the main road with the work zone. Traffic volumes in Directions 3 and 4 are the flows on a detour. Users can refer to the graphs under the "Road Types" window for the highway geometry configuration and traffic directions. The default values of maximum capacity for one direction without work zone for two-lane, four-lane, six-lane, and eight-lane highways
are 1,300 (one lane), 3,000 (two lanes), 4,800 (three lanes), and 8,000 (four lanes) vph, respectively. The default value of maximum capacity of one remaining lane along work zone is $1,200 \mathrm{vphpl}$. The default value of average work zone speed is 30 mph . The Free flow speed along main road or detour is 50 mph . The default value of jam density is 200 vehicle/lane.mile. The average headway is the average time gap between two vehicles along work zone area and its default value is three seconds. Please note that all input parameters or variables are user-specific and users can change the values based on the real traffic and maintenance operation. Some of the inputs are disabled for some particular scenarios, which means those inputs are not required for the scenarios. For example, if alternative 2.1 is selected, the inputs for traffic volume in direction 3 and 4 will be disabled.

Step 3: Project Details
Click "Project Details" button. Figure A-5 will be shown to input project parameters, including cost, duration, length and other parameters.

Figure A-5. Project Details (Steady Traffic Demand)

The cost parameters include average user cost (\$/veh-hour), fixed setup cost (\$/zone), average maintenance cost (\$/lane-mile), and average crash cost (\$/crash). The average user cost is the value of user time (default value is $\$ 12 / \mathrm{veh}-\mathrm{hr}$). The fixed setup cost is the cost for setting up a work zone, denoted as z_{l}, and average maintenance cost is the average cost for maintaining additional mile per lane for a work zone, denoted as z_{2}. The default values of z_{1} and z_{2} vary depending on the different road types and work types. The two-lane highway example shown in Figure A-5 indicates that z_{1} is $\$ 700 /$ zone and z_{2} is $\$ 33,000 /$ lane-mile. The default value of the average crash cost is $\$ 142,000 /$ crash.

The duration parameters include fixed setup time (hour/zone) and average maintenance duration (hour/lane-mile). The fixed setup time is the duration for setting up a work zone, denoted as z_{3}, and average maintenance time is the duration for maintaining additional mile per lane for a work zone, denoted as z_{4}. The default values of z_{3} and z_{4} vary depending on the different road types and work types. The two-lane highway example shown in Figure A-5 indicates that z_{3} is $1 \mathrm{hr} /$ zone and z_{4} is $12 \mathrm{hr} /$ lane-mile.
"Length" is applied when a single detour is available, for example, Alternatives 2.2, 2.3, and 2.4. If an alternative without a detour is selected, such as Alternative 2.1 or 4.1, inputs under the 'Length' tab will be disabled. "Length" includes the main road length between the beginning and end of detour (AB), length of first, second, and third detour segments $\left(L_{d 1}, L_{d 2}\right.$, and $\left.L_{d 3}\right)$.

Other parameters include the number of crash per 100 million vehicle-hour (default value is $40 \mathrm{acc} / 100 \mathrm{mvh}$) and the diverted fraction to the detour $p . p$ only affects the alternatives which have partial diversion, e.g. Alternatives 2.2, 4.2, 6.3, 6.4, 8.3, and 8.4, and has no effect on other alternatives without diversion or with full diversion.

Figure A-6. Optimization (Steady Traffic Demand)

Click "Optimization" button. Figure A-6 will show all the inputs users specified in the previous three steps. Users will have the chance to check whether all the inputs are correct. If users want to specify another value for some input, he/she can just go back to that window and change it. Click "Optimizing Work Zone" button to begin to optimize the alternatives that users choose. The message "Start optimizing" will show and users need to click "OK" to start optimizing. When the optimization is completed, the message "Optimization finished!" will pop up. Click "OK" to close the message box. Finally, click "Close this window" to close the "Optimization" window.

Step 5: Output Data
Click "Output Data" button. An output dialog, Figure A-7, will be shown to let users to specify the location and name of the output file. MDZONES lets users save output file as an Excel file. Users only need to choose the directory where they want the output file to save, enter the output name they want, and click "Save". The output file will be generated in the chosen directory. The content of the output includes two parts. The first part has the user inputs, while the second part has the optimized results for the alternatives selected.

Figure A-7. Output Data (Steady Traffic Demand)

2. Time-Dependent Traffic Demand

Step 1: Road Types

Figure A-8. Road Types (Time-Dependent Traffic Demand)

Click "Road Types" button within the frame of Time-Dependent Traffic Demand. Figure A-8 will be shown. Users need to select one road type (2-lane, 4-lane, 6-lane or 8lane), one or multiple alternatives under the road type selected, and one work type (grinding, patching or paving). The difference between Figures A-3 for a steady case and A-8 for a time-dependent case is that there is an additional option "Mixed Alternative" for Alternative Selection in Figure A-8. "Mixed Alternatives" indicates that different alternatives are used for different zones within a project. If only one alternative is selected, the same alternative is applied in all zones of one project, which is called uniform alternatives.

Step 2: Traffic Data
Click "Traffic Data" button. Figure A-9 will be shown to input traffic data, including ADT and Traffic Hourly Distribution, capacity, speed, and density.

Figure A-9. Traffic Data (Time-Dependent Traffic Demand)

The difference between Figures A-4 for a steady case and A-9 for a timedependent case is that "ADT and Traffic Hourly Distribution" in Figure A-9 replaces "Traffic Volumes" in Figure A-4. To input traffic hourly distribution, users must click the "...." button to open the traffic hourly distribution window, as in Figure A-10. This is the window to input hourly traffic for all the directions needed for the 0:00 to 24:00 time period. Users can also prepare the traffic data in an Excel file (an example file TrafficDistribution.xls can be found in the "support" subdirectory in the installation
package and click the "Import" button to import the data. This is very useful if users want to analyze the same data repeatedly. After clicking "OK", the average daily traffic will be calculated for each direction and be shown in Figure A-9. These values cannot be changed. The maximum capacity of detour in Direction 3 is added in Figure A-9 because the detour capacity and queuing delay are considered with time-dependent traffic demands.

Figure A-10. Traffic Hourly Distribution

Step 3: Project Details
Click "Project Details" button. Figure A-11 will be shown to input project parameters, including project starting time, time windows, cost, duration, length, and other parameters.

Figure A-11. Project Details (Time-Dependent Traffic Demand)

The project starting time ranges from 0.00 to 23.99 . MDZONES does not optimize the project starting time but let users specify different starting times and choose the best project starting time. If the time constraints box/es is/are checked, then no work zone can be performed during those constrained time periods. There are at most two constraints in Figure A-11, either morning peak or afternoon peak, or both. The cost parameters are the same as in Figure A-5 except that average idling cost is added.

Average idling cost is the idle cost of equipment and crews if there are pauses between two successive zones. The default value is $\$ 800 / \mathrm{hr}$.

The duration parameters in Figure A-11 are the same as in Figure A-5. "Length" has an additional item compared to Figure A-5. The Maintained Project Length is the total road length that the highway agency will maintain in the project that is being anayzed. Other new parameters include number of intersections along detour and average delay at intersections.

Step 4: Scheduling Optimization

Click "Scheduling Optimization" button. Figure A-12 will show all the inputs users specified in the previous three steps. Users will have the chance to check whether all the inputs are correct. If users want to specify another value for some input, they can just go back to that window and change it. Click "Optimizing Work Zone" button to begin optimizing the alternatives that users choose. The message "Start optimizing" will show and users must click "OK" to start optimizing. When the optimization is finished, the message being "Optimization finished!", click "OK". Finally, click "Close this window" to exit.

Figure A-12. Scheduling Optimization (Time-Dependent Traffic Demand)

Step 5: Output Data

Click "Output Data" button. An output dialog will be shown to let users to specify the location and name of the output file. This dialog is the same as Figure A-7 and users
can save the output file as an Excel file. The save procedure is the same as Step 5 for Steady Traffic Demand.

3. Multiple Detour Paths

Step 1: Road Network
Click "Road Network" button within the frame of Multiple Detour Paths. Figure A-13 will be shown. Users need to select one road type (two-lane, four-lane, six-lane or eight-lane), one or multiple alternatives under the road type selected, work type (grinding, patching or paving), input type, and multiple detour type. Click the "Alternative Selection" button will pop up the corresponding window for alternative selection for the road type chosen. There are three types of multiple detours and the maintained segment is the bold segment: segment AE in multiple detour 1 , segment EB in multiple detour 2 , and segment AB in multiple detour 3 .

Figure A-13. Road Network (Multiple Detour Paths)

Step 2: Traffic Data
Click "Traffic Data" button. Figure A-14 will be shown to input traffic data, including ADT and Traffic Hourly Distribution, capacity, speed, and density. Figure A14 has the same inputs and parameters as Figure A-9, except that for a multiple detour case 3 , the maximum capacity of detour road GH is needed.

Figure A-14. Traffic Data (Multiple Detour Paths)

Step 3: Project Details
Click "Project Details" button. Figure A-15 will be shown to input project parameters, including project starting time, cost, duration, length, and other parameters.

Figure A-15. Project Details (Multiple Detour Paths)

Most inputs and parameters in Figure A-15 are same as in Figure A-11. The link lengths on main road and detours are shown in the frame of "Length" and they vary with multiple detour type.

Step 4: Scheduling Optimization

Click "Scheduling Optimization" button. Figure A-16 will show all the inputs users specified in the previous three steps. Users will have the chance to check whether all the inputs are correct. If users want to specify another value for some input, they can just return to that window and change it.

Figure A-16. Scheduling Optimization (Multiple Detour Paths)

The frame for scheduling optimization is almost the same as Figure A-12.
However, there is a new function "Open Current Schedule" that can calculate the total cost of a given current work zone schedule. If users click "Optimize Work Zone", optimized solution will be generated as shown in Figure A-12 and users can save the
optimized solution as an Excel file later. If users click "Open Current Schedule", a dialog will show and ask users to open an existing Excel file. This Excel file should have a current schedule inside (an example file CurrentPolicy.xls is provided in the "support" subdirectory in the installation package). When the current schedule is read, the program will calculate the total cost and each subtotal cost based on this current schedule and all given input data. Users can save the results (including current schedule and its total cost) as an Excel file at Step 5.

Step 5: Output Data
Click "Output Data" button. An output dialog will be shown to let users to specify the location and name of the output file. This dialog is the same as Figure A-7 and users can save output file as an Excel file. The save procedure is the same as Step 5 for Steady Traffic Demand.

Final Note

MDZONES, the Maryland Work Zone Optimization program is a prototype program. There is much room for improving the model and algorithms. For detailed suggestions and recommendations for future development, and to report any bugs in the program and for other suggestions, please contact one of the following persons:

Paul Schonfeld (pschon@eng.umd.edu)
Ying Luo (luoying@,wam.umd.edu)
Chun-Hung "Peter" Chen (chpchen@wam.umd.edu)

Appendix C Summary of Project Meeting on March 12, 2003

Location: Brooklandville, MD

Date: March 12, 2003
Participants:

State Highway Administration
Daniel Witt
John Vananzo
Bob Voelkel
Charles Calhoun
Mark Chapman
Paul Dorsey
University of Maryland, College Park
Paul Schonfeld
Peter Chen

The University of Maryland provided in advance the following questions, which served as the basis for discussion:

Time Constraints

1. What (if any) policies are there about times when lanes may be closed or when pauses in the work should be made?
2. How are the schedules for weekdays and weekends different?

Response:

- SHA avoids maintenance activities on Friday and Saturday nights except in very special cases.

Lane Closure

3. How many lanes are closed simultaneously and when? What criteria are used (e.g. traffic volumes, queue lengths)?
4. What is the time and cost of (1) resurfacing one lane at a time while keeping the other open, versus (2) resurfacing both lanes together?
5. How many lanes can be closed simultaneously on six- and eight-lane highways? What criteria influence such decisions?
6. How long are work zones? How are these lengths determined?

Responses:

- Keep the capacity of a lane below 1800 vphpl when lanes are closed.
- Normal hours are $9 \mathrm{am}-3 \mathrm{pm} ; 7 \mathrm{pm}-5 \mathrm{am}$ for single lane closure, $10 \mathrm{pm}-5$ am for double-lane closure, 12am - 5am for three-lane closure.
- Temperature: $32^{\circ} \mathrm{F}$ for base asphalt, $40^{\circ} \mathrm{F}$ for surface, $50^{\circ} \mathrm{F}$ for gap graded
- $8-10 \%$ rain cancellation due to weather is assumed and pre-estimated in contracts.
- Pavement resurfacing stops during Nov 15 - April 1.

Detour

7. If detours are part of the traffic control plan for resurfacing, how is the traffic diverted to the detours? How well can the diverted fraction of traffic be controlled?

Responses:

- MOT cost (marking, signs, etc.)

Freeway

$1300 \$ / 1$ lane closure per 8 hour setup
$1700 \$ / 2$ lane closure per 8 hour setup
$2100 \$ / 3$ lane closure per 8 hour setup
Rural
$700 \$ / 1$ lane closure per 8 hour setup
$900 \$ / 2$ lane closure per 8 hour setup

- Thus, setup costs are estimated

The following questions concern default values for our Phase I work zone models:

Zone Duration

8. How long does it take to set up a work zone and how long does it take to resurface each lane mile if it is one, two, three or four lanes wide?

Responses:

- How far can we pave in one night
- Flag is moving
- Start - final $45 \mathrm{~min}, 15 \mathrm{~min}$ in winter and 30 min in summer are allowed for hardening (at intersections) before cars are allowed to return
- Heavy trucks would be detrimental
- 1 hour to set up MOT, $45-60 \mathrm{~min}$ to remove MOT
- Stop paving $1.5-2 \mathrm{hr}$ before traffic returns
- Work sequence is: Grinding - Patching - Paving
- Example

Baltimore
1200 ton/night for 8hour, 150ton/hour
When each layer is 1.5 inches, 587 ton/lane.mile are used and it takes 4 hours to do one lane.mile.
When each layer is 2.0 inches, 782 ton/lane.mile are used and it takes 5.2 hours to do one lane.mile.

- Thus, setup duration and average maintenance duration are estimated

Zone Cost

9. How much does it cost to set up a work zone and how much does it cost to resurface each lane mile if it is one, two, three or four lanes wide?

Responses:

- Type of binders, type of surface materials
- Material price: $70 \$$ /ton

45-65 \$/ton, assume 55\$/ton

- Paving

When each layer is 1.5 inches, 600 ton/lane.mile are used. Calculate the quantity and price of material for 2 lane miles:
1200 ton $* 55 \$ /$ ton $=66000 \$ / 2$ lane. mile

$$
=33000 \text { \$/lane.mile }
$$

- Grinding

Each lane.mile has 7040 square yd:
$5280($ feet $/ \mathrm{mile}) * 12$ (feet $/$ lane width $) / 9\left(\right.$ feet $^{2} /$ yard $\left.^{2}\right)$
$=7040 \mathrm{yd}^{2} /$ lane. mile
Unit Price for grinding is about $1.4-10 \$ / \mathrm{yd}^{2}$. Choose $3.5 \$ / \mathrm{yd}^{2}$
$3.5 \$ / \mathrm{yd}^{2} * 7040 \mathrm{yd}^{2} /$ lane. mile $=24640 \$ /$ lane.mile

- Patching
$10 \mathrm{yd}^{2} /$ patch
Example in I-695
17.5 lane.miles, $3770 \mathrm{yd}^{2} / 17.5=215 \mathrm{yd}^{2} /$ lane.mile (patch)

Unit Price is about $40.25 \$ / \mathrm{yd}^{2}$ patched
$40.25 \$ / \mathrm{yd}^{2} * 215 \mathrm{yd}^{2} /$ lane.mile $=8654 \$ /$ lane.mile

- Average maintenance cost are obtained

10. Do you have about any information about the value of time for users, vehicle speeds along work zones, and capacities of the remaining lane(s) along work zones?

If the above questions cannot be answered with simple numerical values, we hope that some documents for real resurfacing projects, regarding project cost, project duration, highway and detour characteristics, traffic data, etc. can be obtained.

Speed-up Cost

1. What is the cost of speeding up the resurfacing? In resurfacing work plans, are there any fast work strategies, for example, adding machines or crews to reduce the project duration? What alternative combinations of equipment, materials, procedures, work team compositions, work durations and times of day might be used for given resurfacing requirements?

Response:

- Contact John Warwick - speed up on Baltimore Beltway
- Difficulties of staggered crews

Real Case

2. In Phase II, we will seek to analyze a real highway resurfacing project. Are there some that you would recommend?

Thank you very much for your help.

